Step | Hyp | Ref
| Expression |
1 | | gsummoncoe1fzo.b |
. . . . . . 7
β’ π΅ = (Baseβπ) |
2 | | eqid 2732 |
. . . . . . 7
β’
(0gβπ) = (0gβπ) |
3 | | gsummoncoe1fzo.r |
. . . . . . . . 9
β’ (π β π
β Ring) |
4 | | gsummoncoe1fzo.p |
. . . . . . . . . 10
β’ π = (Poly1βπ
) |
5 | 4 | ply1ring 21761 |
. . . . . . . . 9
β’ (π
β Ring β π β Ring) |
6 | 3, 5 | syl 17 |
. . . . . . . 8
β’ (π β π β Ring) |
7 | 6 | ringcmnd 20094 |
. . . . . . 7
β’ (π β π β CMnd) |
8 | | nn0ex 12474 |
. . . . . . . 8
β’
β0 β V |
9 | 8 | a1i 11 |
. . . . . . 7
β’ (π β β0 β
V) |
10 | | simpr 485 |
. . . . . . . . . . 11
β’ ((π β§ π β (β0 β
(0..^π))) β π β (β0
β (0..^π))) |
11 | 10 | eldifbd 3960 |
. . . . . . . . . 10
β’ ((π β§ π β (β0 β
(0..^π))) β Β¬
π β (0..^π)) |
12 | 11 | iffalsed 4538 |
. . . . . . . . 9
β’ ((π β§ π β (β0 β
(0..^π))) β if(π β (0..^π), π΄, 0 ) = 0 ) |
13 | 12 | oveq1d 7420 |
. . . . . . . 8
β’ ((π β§ π β (β0 β
(0..^π))) β (if(π β (0..^π), π΄, 0 ) β (π β π)) = ( 0 β (π β π))) |
14 | 3 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π β (β0 β
(0..^π))) β π
β Ring) |
15 | 10 | eldifad 3959 |
. . . . . . . . . 10
β’ ((π β§ π β (β0 β
(0..^π))) β π β
β0) |
16 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(mulGrpβπ) =
(mulGrpβπ) |
17 | 16, 1 | mgpbas 19987 |
. . . . . . . . . . 11
β’ π΅ =
(Baseβ(mulGrpβπ)) |
18 | | gsummoncoe1fzo.e |
. . . . . . . . . . 11
β’ β =
(.gβ(mulGrpβπ)) |
19 | 16 | ringmgp 20055 |
. . . . . . . . . . . . 13
β’ (π β Ring β
(mulGrpβπ) β
Mnd) |
20 | 6, 19 | syl 17 |
. . . . . . . . . . . 12
β’ (π β (mulGrpβπ) β Mnd) |
21 | 20 | adantr 481 |
. . . . . . . . . . 11
β’ ((π β§ π β β0) β
(mulGrpβπ) β
Mnd) |
22 | | simpr 485 |
. . . . . . . . . . 11
β’ ((π β§ π β β0) β π β
β0) |
23 | | gsummoncoe1fzo.x |
. . . . . . . . . . . . . 14
β’ π = (var1βπ
) |
24 | 23, 4, 1 | vr1cl 21732 |
. . . . . . . . . . . . 13
β’ (π
β Ring β π β π΅) |
25 | 3, 24 | syl 17 |
. . . . . . . . . . . 12
β’ (π β π β π΅) |
26 | 25 | adantr 481 |
. . . . . . . . . . 11
β’ ((π β§ π β β0) β π β π΅) |
27 | 17, 18, 21, 22, 26 | mulgnn0cld 18969 |
. . . . . . . . . 10
β’ ((π β§ π β β0) β (π β π) β π΅) |
28 | 15, 27 | syldan 591 |
. . . . . . . . 9
β’ ((π β§ π β (β0 β
(0..^π))) β (π β π) β π΅) |
29 | | gsummoncoe1fzo.m |
. . . . . . . . . 10
β’ β = (
Β·π βπ) |
30 | | gsummoncoe1fzo.1 |
. . . . . . . . . 10
β’ 0 =
(0gβπ
) |
31 | 4, 1, 29, 30 | ply10s0 21769 |
. . . . . . . . 9
β’ ((π
β Ring β§ (π β π) β π΅) β ( 0 β (π β π)) = (0gβπ)) |
32 | 14, 28, 31 | syl2anc 584 |
. . . . . . . 8
β’ ((π β§ π β (β0 β
(0..^π))) β ( 0 β (π β π)) = (0gβπ)) |
33 | 13, 32 | eqtrd 2772 |
. . . . . . 7
β’ ((π β§ π β (β0 β
(0..^π))) β (if(π β (0..^π), π΄, 0 ) β (π β π)) = (0gβπ)) |
34 | | fzofi 13935 |
. . . . . . . 8
β’
(0..^π) β
Fin |
35 | 34 | a1i 11 |
. . . . . . 7
β’ (π β (0..^π) β Fin) |
36 | 4 | ply1lmod 21765 |
. . . . . . . . . 10
β’ (π
β Ring β π β LMod) |
37 | 3, 36 | syl 17 |
. . . . . . . . 9
β’ (π β π β LMod) |
38 | 37 | adantr 481 |
. . . . . . . 8
β’ ((π β§ π β β0) β π β LMod) |
39 | | gsummoncoe1fzo.a |
. . . . . . . . . . . 12
β’ (π β βπ β (0..^π)π΄ β πΎ) |
40 | 39 | r19.21bi 3248 |
. . . . . . . . . . 11
β’ ((π β§ π β (0..^π)) β π΄ β πΎ) |
41 | 40 | adantlr 713 |
. . . . . . . . . 10
β’ (((π β§ π β β0) β§ π β (0..^π)) β π΄ β πΎ) |
42 | | gsummoncoe1fzo.k |
. . . . . . . . . . . . 13
β’ πΎ = (Baseβπ
) |
43 | 42, 30 | ring0cl 20077 |
. . . . . . . . . . . 12
β’ (π
β Ring β 0 β πΎ) |
44 | 3, 43 | syl 17 |
. . . . . . . . . . 11
β’ (π β 0 β πΎ) |
45 | 44 | ad2antrr 724 |
. . . . . . . . . 10
β’ (((π β§ π β β0) β§ Β¬
π β (0..^π)) β 0 β πΎ) |
46 | 41, 45 | ifclda 4562 |
. . . . . . . . 9
β’ ((π β§ π β β0) β if(π β (0..^π), π΄, 0 ) β πΎ) |
47 | 4 | ply1sca 21766 |
. . . . . . . . . . . . 13
β’ (π
β Ring β π
= (Scalarβπ)) |
48 | 3, 47 | syl 17 |
. . . . . . . . . . . 12
β’ (π β π
= (Scalarβπ)) |
49 | 48 | fveq2d 6892 |
. . . . . . . . . . 11
β’ (π β (Baseβπ
) =
(Baseβ(Scalarβπ))) |
50 | 42, 49 | eqtrid 2784 |
. . . . . . . . . 10
β’ (π β πΎ = (Baseβ(Scalarβπ))) |
51 | 50 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π β β0) β πΎ =
(Baseβ(Scalarβπ))) |
52 | 46, 51 | eleqtrd 2835 |
. . . . . . . 8
β’ ((π β§ π β β0) β if(π β (0..^π), π΄, 0 ) β
(Baseβ(Scalarβπ))) |
53 | | eqid 2732 |
. . . . . . . . 9
β’
(Scalarβπ) =
(Scalarβπ) |
54 | | eqid 2732 |
. . . . . . . . 9
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
55 | 1, 53, 29, 54 | lmodvscl 20481 |
. . . . . . . 8
β’ ((π β LMod β§ if(π β (0..^π), π΄, 0 ) β
(Baseβ(Scalarβπ)) β§ (π β π) β π΅) β (if(π β (0..^π), π΄, 0 ) β (π β π)) β π΅) |
56 | 38, 52, 27, 55 | syl3anc 1371 |
. . . . . . 7
β’ ((π β§ π β β0) β (if(π β (0..^π), π΄, 0 ) β (π β π)) β π΅) |
57 | | fzo0ssnn0 13709 |
. . . . . . . 8
β’
(0..^π) β
β0 |
58 | 57 | a1i 11 |
. . . . . . 7
β’ (π β (0..^π) β
β0) |
59 | 1, 2, 7, 9, 33, 35, 56, 58 | gsummptres2 32192 |
. . . . . 6
β’ (π β (π Ξ£g (π β β0
β¦ (if(π β
(0..^π), π΄, 0 ) β (π β π)))) = (π Ξ£g (π β (0..^π) β¦ (if(π β (0..^π), π΄, 0 ) β (π β π))))) |
60 | | simpr 485 |
. . . . . . . . . 10
β’ ((π β§ π β (0..^π)) β π β (0..^π)) |
61 | 60 | iftrued 4535 |
. . . . . . . . 9
β’ ((π β§ π β (0..^π)) β if(π β (0..^π), π΄, 0 ) = π΄) |
62 | 61 | oveq1d 7420 |
. . . . . . . 8
β’ ((π β§ π β (0..^π)) β (if(π β (0..^π), π΄, 0 ) β (π β π)) = (π΄ β (π β π))) |
63 | 62 | mpteq2dva 5247 |
. . . . . . 7
β’ (π β (π β (0..^π) β¦ (if(π β (0..^π), π΄, 0 ) β (π β π))) = (π β (0..^π) β¦ (π΄ β (π β π)))) |
64 | 63 | oveq2d 7421 |
. . . . . 6
β’ (π β (π Ξ£g (π β (0..^π) β¦ (if(π β (0..^π), π΄, 0 ) β (π β π)))) = (π Ξ£g (π β (0..^π) β¦ (π΄ β (π β π))))) |
65 | 59, 64 | eqtrd 2772 |
. . . . 5
β’ (π β (π Ξ£g (π β β0
β¦ (if(π β
(0..^π), π΄, 0 ) β (π β π)))) = (π Ξ£g (π β (0..^π) β¦ (π΄ β (π β π))))) |
66 | 65 | fveq2d 6892 |
. . . 4
β’ (π β
(coe1β(π
Ξ£g (π β β0 β¦ (if(π β (0..^π), π΄, 0 ) β (π β π))))) = (coe1β(π Ξ£g
(π β (0..^π) β¦ (π΄ β (π β π)))))) |
67 | 66 | fveq1d 6890 |
. . 3
β’ (π β
((coe1β(π
Ξ£g (π β β0 β¦ (if(π β (0..^π), π΄, 0 ) β (π β π)))))βπΏ) = ((coe1β(π Ξ£g
(π β (0..^π) β¦ (π΄ β (π β π)))))βπΏ)) |
68 | 46 | ralrimiva 3146 |
. . . 4
β’ (π β βπ β β0 if(π β (0..^π), π΄, 0 ) β πΎ) |
69 | | eqid 2732 |
. . . . 5
β’ (π β β0
β¦ if(π β
(0..^π), π΄, 0 )) = (π β β0 β¦ if(π β (0..^π), π΄, 0 )) |
70 | 69, 9, 35, 40, 44 | mptiffisupp 31902 |
. . . 4
β’ (π β (π β β0 β¦ if(π β (0..^π), π΄, 0 )) finSupp 0
) |
71 | | gsummoncoe1fzo.l |
. . . . 5
β’ (π β πΏ β (0..^π)) |
72 | 57, 71 | sselid 3979 |
. . . 4
β’ (π β πΏ β
β0) |
73 | 4, 1, 23, 18, 3, 42, 29, 30, 68, 70, 72 | gsummoncoe1 21819 |
. . 3
β’ (π β
((coe1β(π
Ξ£g (π β β0 β¦ (if(π β (0..^π), π΄, 0 ) β (π β π)))))βπΏ) = β¦πΏ / πβ¦if(π β (0..^π), π΄, 0 )) |
74 | 67, 73 | eqtr3d 2774 |
. 2
β’ (π β
((coe1β(π
Ξ£g (π β (0..^π) β¦ (π΄ β (π β π)))))βπΏ) = β¦πΏ / πβ¦if(π β (0..^π), π΄, 0 )) |
75 | | eleq1 2821 |
. . . . 5
β’ (π = πΏ β (π β (0..^π) β πΏ β (0..^π))) |
76 | | gsummoncoe1fzo.2 |
. . . . 5
β’ (π = πΏ β π΄ = πΆ) |
77 | 75, 76 | ifbieq1d 4551 |
. . . 4
β’ (π = πΏ β if(π β (0..^π), π΄, 0 ) = if(πΏ β (0..^π), πΆ, 0 )) |
78 | 77 | adantl 482 |
. . 3
β’ ((π β§ π = πΏ) β if(π β (0..^π), π΄, 0 ) = if(πΏ β (0..^π), πΆ, 0 )) |
79 | 71, 78 | csbied 3930 |
. 2
β’ (π β β¦πΏ / πβ¦if(π β (0..^π), π΄, 0 ) = if(πΏ β (0..^π), πΆ, 0 )) |
80 | 71 | iftrued 4535 |
. 2
β’ (π β if(πΏ β (0..^π), πΆ, 0 ) = πΆ) |
81 | 74, 79, 80 | 3eqtrd 2776 |
1
β’ (π β
((coe1β(π
Ξ£g (π β (0..^π) β¦ (π΄ β (π β π)))))βπΏ) = πΆ) |