MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodeq0 Structured version   Visualization version   GIF version

Theorem fprodeq0 15613
Description: Any finite product containing a zero term is itself zero. (Contributed by Scott Fenton, 27-Dec-2017.)
Hypotheses
Ref Expression
fprodeq0.1 𝑍 = (ℤ𝑀)
fprodeq0.2 (𝜑𝑁𝑍)
fprodeq0.3 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
fprodeq0.4 ((𝜑𝑘 = 𝑁) → 𝐴 = 0)
Assertion
Ref Expression
fprodeq0 ((𝜑𝐾 ∈ (ℤ𝑁)) → ∏𝑘 ∈ (𝑀...𝐾)𝐴 = 0)
Distinct variable groups:   𝑘,𝐾   𝑘,𝑀   𝑘,𝑁   𝑘,𝑍   𝜑,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fprodeq0
StepHypRef Expression
1 eluzel2 12516 . . . . . . 7 (𝐾 ∈ (ℤ𝑁) → 𝑁 ∈ ℤ)
21adantl 481 . . . . . 6 ((𝜑𝐾 ∈ (ℤ𝑁)) → 𝑁 ∈ ℤ)
32zred 12355 . . . . 5 ((𝜑𝐾 ∈ (ℤ𝑁)) → 𝑁 ∈ ℝ)
43ltp1d 11835 . . . 4 ((𝜑𝐾 ∈ (ℤ𝑁)) → 𝑁 < (𝑁 + 1))
5 fzdisj 13212 . . . 4 (𝑁 < (𝑁 + 1) → ((𝑀...𝑁) ∩ ((𝑁 + 1)...𝐾)) = ∅)
64, 5syl 17 . . 3 ((𝜑𝐾 ∈ (ℤ𝑁)) → ((𝑀...𝑁) ∩ ((𝑁 + 1)...𝐾)) = ∅)
7 fprodeq0.2 . . . . . . . 8 (𝜑𝑁𝑍)
8 eluzel2 12516 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
9 fprodeq0.1 . . . . . . . . 9 𝑍 = (ℤ𝑀)
108, 9eleq2s 2857 . . . . . . . 8 (𝑁𝑍𝑀 ∈ ℤ)
117, 10syl 17 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
1211adantr 480 . . . . . 6 ((𝜑𝐾 ∈ (ℤ𝑁)) → 𝑀 ∈ ℤ)
13 eluzelz 12521 . . . . . . 7 (𝐾 ∈ (ℤ𝑁) → 𝐾 ∈ ℤ)
1413adantl 481 . . . . . 6 ((𝜑𝐾 ∈ (ℤ𝑁)) → 𝐾 ∈ ℤ)
1512, 14, 23jca 1126 . . . . 5 ((𝜑𝐾 ∈ (ℤ𝑁)) → (𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))
16 eluzle 12524 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
1716, 9eleq2s 2857 . . . . . . 7 (𝑁𝑍𝑀𝑁)
187, 17syl 17 . . . . . 6 (𝜑𝑀𝑁)
19 eluzle 12524 . . . . . 6 (𝐾 ∈ (ℤ𝑁) → 𝑁𝐾)
2018, 19anim12i 612 . . . . 5 ((𝜑𝐾 ∈ (ℤ𝑁)) → (𝑀𝑁𝑁𝐾))
21 elfz2 13175 . . . . 5 (𝑁 ∈ (𝑀...𝐾) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝑁𝑁𝐾)))
2215, 20, 21sylanbrc 582 . . . 4 ((𝜑𝐾 ∈ (ℤ𝑁)) → 𝑁 ∈ (𝑀...𝐾))
23 fzsplit 13211 . . . 4 (𝑁 ∈ (𝑀...𝐾) → (𝑀...𝐾) = ((𝑀...𝑁) ∪ ((𝑁 + 1)...𝐾)))
2422, 23syl 17 . . 3 ((𝜑𝐾 ∈ (ℤ𝑁)) → (𝑀...𝐾) = ((𝑀...𝑁) ∪ ((𝑁 + 1)...𝐾)))
25 fzfid 13621 . . 3 ((𝜑𝐾 ∈ (ℤ𝑁)) → (𝑀...𝐾) ∈ Fin)
26 elfzuz 13181 . . . . . 6 (𝑘 ∈ (𝑀...𝐾) → 𝑘 ∈ (ℤ𝑀))
2726, 9eleqtrrdi 2850 . . . . 5 (𝑘 ∈ (𝑀...𝐾) → 𝑘𝑍)
28 fprodeq0.3 . . . . 5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
2927, 28sylan2 592 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝐾)) → 𝐴 ∈ ℂ)
3029adantlr 711 . . 3 (((𝜑𝐾 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (𝑀...𝐾)) → 𝐴 ∈ ℂ)
316, 24, 25, 30fprodsplit 15604 . 2 ((𝜑𝐾 ∈ (ℤ𝑁)) → ∏𝑘 ∈ (𝑀...𝐾)𝐴 = (∏𝑘 ∈ (𝑀...𝑁)𝐴 · ∏𝑘 ∈ ((𝑁 + 1)...𝐾)𝐴))
327, 9eleqtrdi 2849 . . . . . 6 (𝜑𝑁 ∈ (ℤ𝑀))
33 elfzuz 13181 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ𝑀))
3433, 9eleqtrrdi 2850 . . . . . . 7 (𝑘 ∈ (𝑀...𝑁) → 𝑘𝑍)
3534, 28sylan2 592 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
3632, 35fprodm1s 15608 . . . . 5 (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 𝑁 / 𝑘𝐴))
37 fprodeq0.4 . . . . . . 7 ((𝜑𝑘 = 𝑁) → 𝐴 = 0)
387, 37csbied 3866 . . . . . 6 (𝜑𝑁 / 𝑘𝐴 = 0)
3938oveq2d 7271 . . . . 5 (𝜑 → (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 𝑁 / 𝑘𝐴) = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 0))
40 fzfid 13621 . . . . . . 7 (𝜑 → (𝑀...(𝑁 − 1)) ∈ Fin)
41 elfzuz 13181 . . . . . . . . 9 (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘 ∈ (ℤ𝑀))
4241, 9eleqtrrdi 2850 . . . . . . . 8 (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘𝑍)
4342, 28sylan2 592 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝐴 ∈ ℂ)
4440, 43fprodcl 15590 . . . . . 6 (𝜑 → ∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 ∈ ℂ)
4544mul01d 11104 . . . . 5 (𝜑 → (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 0) = 0)
4636, 39, 453eqtrd 2782 . . . 4 (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = 0)
4746adantr 480 . . 3 ((𝜑𝐾 ∈ (ℤ𝑁)) → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = 0)
4847oveq1d 7270 . 2 ((𝜑𝐾 ∈ (ℤ𝑁)) → (∏𝑘 ∈ (𝑀...𝑁)𝐴 · ∏𝑘 ∈ ((𝑁 + 1)...𝐾)𝐴) = (0 · ∏𝑘 ∈ ((𝑁 + 1)...𝐾)𝐴))
49 fzfid 13621 . . . 4 ((𝜑𝐾 ∈ (ℤ𝑁)) → ((𝑁 + 1)...𝐾) ∈ Fin)
509peano2uzs 12571 . . . . . . . . 9 (𝑁𝑍 → (𝑁 + 1) ∈ 𝑍)
517, 50syl 17 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ 𝑍)
52 elfzuz 13181 . . . . . . . 8 (𝑘 ∈ ((𝑁 + 1)...𝐾) → 𝑘 ∈ (ℤ‘(𝑁 + 1)))
539uztrn2 12530 . . . . . . . 8 (((𝑁 + 1) ∈ 𝑍𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘𝑍)
5451, 52, 53syl2an 595 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑁 + 1)...𝐾)) → 𝑘𝑍)
5554adantrl 712 . . . . . 6 ((𝜑 ∧ (𝐾 ∈ (ℤ𝑁) ∧ 𝑘 ∈ ((𝑁 + 1)...𝐾))) → 𝑘𝑍)
5655, 28syldan 590 . . . . 5 ((𝜑 ∧ (𝐾 ∈ (ℤ𝑁) ∧ 𝑘 ∈ ((𝑁 + 1)...𝐾))) → 𝐴 ∈ ℂ)
5756anassrs 467 . . . 4 (((𝜑𝐾 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ ((𝑁 + 1)...𝐾)) → 𝐴 ∈ ℂ)
5849, 57fprodcl 15590 . . 3 ((𝜑𝐾 ∈ (ℤ𝑁)) → ∏𝑘 ∈ ((𝑁 + 1)...𝐾)𝐴 ∈ ℂ)
5958mul02d 11103 . 2 ((𝜑𝐾 ∈ (ℤ𝑁)) → (0 · ∏𝑘 ∈ ((𝑁 + 1)...𝐾)𝐴) = 0)
6031, 48, 593eqtrd 2782 1 ((𝜑𝐾 ∈ (ℤ𝑁)) → ∏𝑘 ∈ (𝑀...𝐾)𝐴 = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  csb 3828  cun 3881  cin 3882  c0 4253   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135  cz 12249  cuz 12511  ...cfz 13168  cprod 15543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-prod 15544
This theorem is referenced by:  bcc0  41847
  Copyright terms: Public domain W3C validator