Proof of Theorem fprodeq0
Step | Hyp | Ref
| Expression |
1 | | eluzel2 12587 |
. . . . . . 7
⊢ (𝐾 ∈
(ℤ≥‘𝑁) → 𝑁 ∈ ℤ) |
2 | 1 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝑁 ∈ ℤ) |
3 | 2 | zred 12426 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝑁 ∈ ℝ) |
4 | 3 | ltp1d 11905 |
. . . 4
⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝑁 < (𝑁 + 1)) |
5 | | fzdisj 13283 |
. . . 4
⊢ (𝑁 < (𝑁 + 1) → ((𝑀...𝑁) ∩ ((𝑁 + 1)...𝐾)) = ∅) |
6 | 4, 5 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → ((𝑀...𝑁) ∩ ((𝑁 + 1)...𝐾)) = ∅) |
7 | | fprodeq0.2 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ 𝑍) |
8 | | eluzel2 12587 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
9 | | fprodeq0.1 |
. . . . . . . . 9
⊢ 𝑍 =
(ℤ≥‘𝑀) |
10 | 8, 9 | eleq2s 2857 |
. . . . . . . 8
⊢ (𝑁 ∈ 𝑍 → 𝑀 ∈ ℤ) |
11 | 7, 10 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) |
12 | 11 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℤ) |
13 | | eluzelz 12592 |
. . . . . . 7
⊢ (𝐾 ∈
(ℤ≥‘𝑁) → 𝐾 ∈ ℤ) |
14 | 13 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝐾 ∈ ℤ) |
15 | 12, 14, 2 | 3jca 1127 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → (𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
16 | | eluzle 12595 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) |
17 | 16, 9 | eleq2s 2857 |
. . . . . . 7
⊢ (𝑁 ∈ 𝑍 → 𝑀 ≤ 𝑁) |
18 | 7, 17 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑀 ≤ 𝑁) |
19 | | eluzle 12595 |
. . . . . 6
⊢ (𝐾 ∈
(ℤ≥‘𝑁) → 𝑁 ≤ 𝐾) |
20 | 18, 19 | anim12i 613 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → (𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝐾)) |
21 | | elfz2 13246 |
. . . . 5
⊢ (𝑁 ∈ (𝑀...𝐾) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝐾))) |
22 | 15, 20, 21 | sylanbrc 583 |
. . . 4
⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → 𝑁 ∈ (𝑀...𝐾)) |
23 | | fzsplit 13282 |
. . . 4
⊢ (𝑁 ∈ (𝑀...𝐾) → (𝑀...𝐾) = ((𝑀...𝑁) ∪ ((𝑁 + 1)...𝐾))) |
24 | 22, 23 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → (𝑀...𝐾) = ((𝑀...𝑁) ∪ ((𝑁 + 1)...𝐾))) |
25 | | fzfid 13693 |
. . 3
⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → (𝑀...𝐾) ∈ Fin) |
26 | | elfzuz 13252 |
. . . . . 6
⊢ (𝑘 ∈ (𝑀...𝐾) → 𝑘 ∈ (ℤ≥‘𝑀)) |
27 | 26, 9 | eleqtrrdi 2850 |
. . . . 5
⊢ (𝑘 ∈ (𝑀...𝐾) → 𝑘 ∈ 𝑍) |
28 | | fprodeq0.3 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
29 | 27, 28 | sylan2 593 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝐾)) → 𝐴 ∈ ℂ) |
30 | 29 | adantlr 712 |
. . 3
⊢ (((𝜑 ∧ 𝐾 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ (𝑀...𝐾)) → 𝐴 ∈ ℂ) |
31 | 6, 24, 25, 30 | fprodsplit 15676 |
. 2
⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → ∏𝑘 ∈ (𝑀...𝐾)𝐴 = (∏𝑘 ∈ (𝑀...𝑁)𝐴 · ∏𝑘 ∈ ((𝑁 + 1)...𝐾)𝐴)) |
32 | 7, 9 | eleqtrdi 2849 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
33 | | elfzuz 13252 |
. . . . . . . 8
⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ≥‘𝑀)) |
34 | 33, 9 | eleqtrrdi 2850 |
. . . . . . 7
⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ 𝑍) |
35 | 34, 28 | sylan2 593 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
36 | 32, 35 | fprodm1s 15680 |
. . . . 5
⊢ (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · ⦋𝑁 / 𝑘⦌𝐴)) |
37 | | fprodeq0.4 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 = 𝑁) → 𝐴 = 0) |
38 | 7, 37 | csbied 3870 |
. . . . . 6
⊢ (𝜑 → ⦋𝑁 / 𝑘⦌𝐴 = 0) |
39 | 38 | oveq2d 7291 |
. . . . 5
⊢ (𝜑 → (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · ⦋𝑁 / 𝑘⦌𝐴) = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 0)) |
40 | | fzfid 13693 |
. . . . . . 7
⊢ (𝜑 → (𝑀...(𝑁 − 1)) ∈ Fin) |
41 | | elfzuz 13252 |
. . . . . . . . 9
⊢ (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
42 | 41, 9 | eleqtrrdi 2850 |
. . . . . . . 8
⊢ (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘 ∈ 𝑍) |
43 | 42, 28 | sylan2 593 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝐴 ∈ ℂ) |
44 | 40, 43 | fprodcl 15662 |
. . . . . 6
⊢ (𝜑 → ∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 ∈ ℂ) |
45 | 44 | mul01d 11174 |
. . . . 5
⊢ (𝜑 → (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 0) = 0) |
46 | 36, 39, 45 | 3eqtrd 2782 |
. . . 4
⊢ (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = 0) |
47 | 46 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = 0) |
48 | 47 | oveq1d 7290 |
. 2
⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → (∏𝑘 ∈ (𝑀...𝑁)𝐴 · ∏𝑘 ∈ ((𝑁 + 1)...𝐾)𝐴) = (0 · ∏𝑘 ∈ ((𝑁 + 1)...𝐾)𝐴)) |
49 | | fzfid 13693 |
. . . 4
⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → ((𝑁 + 1)...𝐾) ∈ Fin) |
50 | 9 | peano2uzs 12642 |
. . . . . . . . 9
⊢ (𝑁 ∈ 𝑍 → (𝑁 + 1) ∈ 𝑍) |
51 | 7, 50 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 + 1) ∈ 𝑍) |
52 | | elfzuz 13252 |
. . . . . . . 8
⊢ (𝑘 ∈ ((𝑁 + 1)...𝐾) → 𝑘 ∈ (ℤ≥‘(𝑁 + 1))) |
53 | 9 | uztrn2 12601 |
. . . . . . . 8
⊢ (((𝑁 + 1) ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈ 𝑍) |
54 | 51, 52, 53 | syl2an 596 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑁 + 1)...𝐾)) → 𝑘 ∈ 𝑍) |
55 | 54 | adantrl 713 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐾 ∈ (ℤ≥‘𝑁) ∧ 𝑘 ∈ ((𝑁 + 1)...𝐾))) → 𝑘 ∈ 𝑍) |
56 | 55, 28 | syldan 591 |
. . . . 5
⊢ ((𝜑 ∧ (𝐾 ∈ (ℤ≥‘𝑁) ∧ 𝑘 ∈ ((𝑁 + 1)...𝐾))) → 𝐴 ∈ ℂ) |
57 | 56 | anassrs 468 |
. . . 4
⊢ (((𝜑 ∧ 𝐾 ∈ (ℤ≥‘𝑁)) ∧ 𝑘 ∈ ((𝑁 + 1)...𝐾)) → 𝐴 ∈ ℂ) |
58 | 49, 57 | fprodcl 15662 |
. . 3
⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → ∏𝑘 ∈ ((𝑁 + 1)...𝐾)𝐴 ∈ ℂ) |
59 | 58 | mul02d 11173 |
. 2
⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → (0 ·
∏𝑘 ∈ ((𝑁 + 1)...𝐾)𝐴) = 0) |
60 | 31, 48, 59 | 3eqtrd 2782 |
1
⊢ ((𝜑 ∧ 𝐾 ∈ (ℤ≥‘𝑁)) → ∏𝑘 ∈ (𝑀...𝐾)𝐴 = 0) |