MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodeq0 Structured version   Visualization version   GIF version

Theorem fprodeq0 15321
Description: Anything finite product containing a zero term is itself zero. (Contributed by Scott Fenton, 27-Dec-2017.)
Hypotheses
Ref Expression
fprodeq0.1 𝑍 = (ℤ𝑀)
fprodeq0.2 (𝜑𝑁𝑍)
fprodeq0.3 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
fprodeq0.4 ((𝜑𝑘 = 𝑁) → 𝐴 = 0)
Assertion
Ref Expression
fprodeq0 ((𝜑𝐾 ∈ (ℤ𝑁)) → ∏𝑘 ∈ (𝑀...𝐾)𝐴 = 0)
Distinct variable groups:   𝑘,𝐾   𝑘,𝑀   𝑘,𝑁   𝑘,𝑍   𝜑,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem fprodeq0
StepHypRef Expression
1 eluzel2 12240 . . . . . . 7 (𝐾 ∈ (ℤ𝑁) → 𝑁 ∈ ℤ)
21adantl 484 . . . . . 6 ((𝜑𝐾 ∈ (ℤ𝑁)) → 𝑁 ∈ ℤ)
32zred 12079 . . . . 5 ((𝜑𝐾 ∈ (ℤ𝑁)) → 𝑁 ∈ ℝ)
43ltp1d 11562 . . . 4 ((𝜑𝐾 ∈ (ℤ𝑁)) → 𝑁 < (𝑁 + 1))
5 fzdisj 12926 . . . 4 (𝑁 < (𝑁 + 1) → ((𝑀...𝑁) ∩ ((𝑁 + 1)...𝐾)) = ∅)
64, 5syl 17 . . 3 ((𝜑𝐾 ∈ (ℤ𝑁)) → ((𝑀...𝑁) ∩ ((𝑁 + 1)...𝐾)) = ∅)
7 fprodeq0.2 . . . . . . . 8 (𝜑𝑁𝑍)
8 eluzel2 12240 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
9 fprodeq0.1 . . . . . . . . 9 𝑍 = (ℤ𝑀)
108, 9eleq2s 2929 . . . . . . . 8 (𝑁𝑍𝑀 ∈ ℤ)
117, 10syl 17 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
1211adantr 483 . . . . . 6 ((𝜑𝐾 ∈ (ℤ𝑁)) → 𝑀 ∈ ℤ)
13 eluzelz 12245 . . . . . . 7 (𝐾 ∈ (ℤ𝑁) → 𝐾 ∈ ℤ)
1413adantl 484 . . . . . 6 ((𝜑𝐾 ∈ (ℤ𝑁)) → 𝐾 ∈ ℤ)
1512, 14, 23jca 1122 . . . . 5 ((𝜑𝐾 ∈ (ℤ𝑁)) → (𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))
16 eluzle 12248 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
1716, 9eleq2s 2929 . . . . . . 7 (𝑁𝑍𝑀𝑁)
187, 17syl 17 . . . . . 6 (𝜑𝑀𝑁)
19 eluzle 12248 . . . . . 6 (𝐾 ∈ (ℤ𝑁) → 𝑁𝐾)
2018, 19anim12i 614 . . . . 5 ((𝜑𝐾 ∈ (ℤ𝑁)) → (𝑀𝑁𝑁𝐾))
21 elfz2 12891 . . . . 5 (𝑁 ∈ (𝑀...𝐾) ↔ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝑁𝑁𝐾)))
2215, 20, 21sylanbrc 585 . . . 4 ((𝜑𝐾 ∈ (ℤ𝑁)) → 𝑁 ∈ (𝑀...𝐾))
23 fzsplit 12925 . . . 4 (𝑁 ∈ (𝑀...𝐾) → (𝑀...𝐾) = ((𝑀...𝑁) ∪ ((𝑁 + 1)...𝐾)))
2422, 23syl 17 . . 3 ((𝜑𝐾 ∈ (ℤ𝑁)) → (𝑀...𝐾) = ((𝑀...𝑁) ∪ ((𝑁 + 1)...𝐾)))
25 fzfid 13333 . . 3 ((𝜑𝐾 ∈ (ℤ𝑁)) → (𝑀...𝐾) ∈ Fin)
26 elfzuz 12896 . . . . . 6 (𝑘 ∈ (𝑀...𝐾) → 𝑘 ∈ (ℤ𝑀))
2726, 9eleqtrrdi 2922 . . . . 5 (𝑘 ∈ (𝑀...𝐾) → 𝑘𝑍)
28 fprodeq0.3 . . . . 5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
2927, 28sylan2 594 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝐾)) → 𝐴 ∈ ℂ)
3029adantlr 713 . . 3 (((𝜑𝐾 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ (𝑀...𝐾)) → 𝐴 ∈ ℂ)
316, 24, 25, 30fprodsplit 15312 . 2 ((𝜑𝐾 ∈ (ℤ𝑁)) → ∏𝑘 ∈ (𝑀...𝐾)𝐴 = (∏𝑘 ∈ (𝑀...𝑁)𝐴 · ∏𝑘 ∈ ((𝑁 + 1)...𝐾)𝐴))
327, 9eleqtrdi 2921 . . . . . 6 (𝜑𝑁 ∈ (ℤ𝑀))
33 elfzuz 12896 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ𝑀))
3433, 9eleqtrrdi 2922 . . . . . . 7 (𝑘 ∈ (𝑀...𝑁) → 𝑘𝑍)
3534, 28sylan2 594 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)
3632, 35fprodm1s 15316 . . . . 5 (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 𝑁 / 𝑘𝐴))
37 fprodeq0.4 . . . . . . 7 ((𝜑𝑘 = 𝑁) → 𝐴 = 0)
387, 37csbied 3917 . . . . . 6 (𝜑𝑁 / 𝑘𝐴 = 0)
3938oveq2d 7164 . . . . 5 (𝜑 → (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 𝑁 / 𝑘𝐴) = (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 0))
40 fzfid 13333 . . . . . . 7 (𝜑 → (𝑀...(𝑁 − 1)) ∈ Fin)
41 elfzuz 12896 . . . . . . . . 9 (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘 ∈ (ℤ𝑀))
4241, 9eleqtrrdi 2922 . . . . . . . 8 (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘𝑍)
4342, 28sylan2 594 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝐴 ∈ ℂ)
4440, 43fprodcl 15298 . . . . . 6 (𝜑 → ∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 ∈ ℂ)
4544mul01d 10831 . . . . 5 (𝜑 → (∏𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 · 0) = 0)
4636, 39, 453eqtrd 2858 . . . 4 (𝜑 → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = 0)
4746adantr 483 . . 3 ((𝜑𝐾 ∈ (ℤ𝑁)) → ∏𝑘 ∈ (𝑀...𝑁)𝐴 = 0)
4847oveq1d 7163 . 2 ((𝜑𝐾 ∈ (ℤ𝑁)) → (∏𝑘 ∈ (𝑀...𝑁)𝐴 · ∏𝑘 ∈ ((𝑁 + 1)...𝐾)𝐴) = (0 · ∏𝑘 ∈ ((𝑁 + 1)...𝐾)𝐴))
49 fzfid 13333 . . . 4 ((𝜑𝐾 ∈ (ℤ𝑁)) → ((𝑁 + 1)...𝐾) ∈ Fin)
509peano2uzs 12294 . . . . . . . . 9 (𝑁𝑍 → (𝑁 + 1) ∈ 𝑍)
517, 50syl 17 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ 𝑍)
52 elfzuz 12896 . . . . . . . 8 (𝑘 ∈ ((𝑁 + 1)...𝐾) → 𝑘 ∈ (ℤ‘(𝑁 + 1)))
539uztrn2 12254 . . . . . . . 8 (((𝑁 + 1) ∈ 𝑍𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘𝑍)
5451, 52, 53syl2an 597 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑁 + 1)...𝐾)) → 𝑘𝑍)
5554adantrl 714 . . . . . 6 ((𝜑 ∧ (𝐾 ∈ (ℤ𝑁) ∧ 𝑘 ∈ ((𝑁 + 1)...𝐾))) → 𝑘𝑍)
5655, 28syldan 593 . . . . 5 ((𝜑 ∧ (𝐾 ∈ (ℤ𝑁) ∧ 𝑘 ∈ ((𝑁 + 1)...𝐾))) → 𝐴 ∈ ℂ)
5756anassrs 470 . . . 4 (((𝜑𝐾 ∈ (ℤ𝑁)) ∧ 𝑘 ∈ ((𝑁 + 1)...𝐾)) → 𝐴 ∈ ℂ)
5849, 57fprodcl 15298 . . 3 ((𝜑𝐾 ∈ (ℤ𝑁)) → ∏𝑘 ∈ ((𝑁 + 1)...𝐾)𝐴 ∈ ℂ)
5958mul02d 10830 . 2 ((𝜑𝐾 ∈ (ℤ𝑁)) → (0 · ∏𝑘 ∈ ((𝑁 + 1)...𝐾)𝐴) = 0)
6031, 48, 593eqtrd 2858 1 ((𝜑𝐾 ∈ (ℤ𝑁)) → ∏𝑘 ∈ (𝑀...𝐾)𝐴 = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1081   = wceq 1530  wcel 2107  csb 3881  cun 3932  cin 3933  c0 4289   class class class wbr 5057  cfv 6348  (class class class)co 7148  cc 10527  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534   < clt 10667  cle 10668  cmin 10862  cz 11973  cuz 12235  ...cfz 12884  cprod 15251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12885  df-fzo 13026  df-seq 13362  df-exp 13422  df-hash 13683  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-prod 15252
This theorem is referenced by:  bcc0  40657
  Copyright terms: Public domain W3C validator