| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divsassd | Structured version Visualization version GIF version | ||
| Description: An associative law for surreal division. (Contributed by Scott Fenton, 16-Mar-2025.) |
| Ref | Expression |
|---|---|
| divsassd.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| divsassd.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| divsassd.3 | ⊢ (𝜑 → 𝐶 ∈ No ) |
| divsassd.4 | ⊢ (𝜑 → 𝐶 ≠ 0s ) |
| Ref | Expression |
|---|---|
| divsassd | ⊢ (𝜑 → ((𝐴 ·s 𝐵) /su 𝐶) = (𝐴 ·s (𝐵 /su 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divsassd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 2 | divsassd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 3 | divsassd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ No ) | |
| 4 | divsassd.4 | . 2 ⊢ (𝜑 → 𝐶 ≠ 0s ) | |
| 5 | 3, 4 | recsexd 28199 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) |
| 6 | 1, 2, 3, 4, 5 | divsasswd 28183 | 1 ⊢ (𝜑 → ((𝐴 ·s 𝐵) /su 𝐶) = (𝐴 ·s (𝐵 /su 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 (class class class)co 7414 No csur 27639 0s c0s 27822 ·s cmuls 28087 /su cdivs 28168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-dc 10469 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-ot 4617 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-se 5620 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-2o 8490 df-oadd 8493 df-nadd 8687 df-no 27642 df-slt 27643 df-bday 27644 df-sle 27745 df-sslt 27781 df-scut 27783 df-0s 27824 df-1s 27825 df-made 27841 df-old 27842 df-left 27844 df-right 27845 df-norec 27926 df-norec2 27937 df-adds 27948 df-negs 28008 df-subs 28009 df-muls 28088 df-divs 28169 |
| This theorem is referenced by: zs12bday 28379 |
| Copyright terms: Public domain | W3C validator |