| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divsasswd | Structured version Visualization version GIF version | ||
| Description: An associative law for surreal division. Weak version. (Contributed by Scott Fenton, 14-Mar-2025.) |
| Ref | Expression |
|---|---|
| divsasswd.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| divsasswd.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| divsasswd.3 | ⊢ (𝜑 → 𝐶 ∈ No ) |
| divsasswd.4 | ⊢ (𝜑 → 𝐶 ≠ 0s ) |
| divsasswd.5 | ⊢ (𝜑 → ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) |
| Ref | Expression |
|---|---|
| divsasswd | ⊢ (𝜑 → ((𝐴 ·s 𝐵) /su 𝐶) = (𝐴 ·s (𝐵 /su 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divsasswd.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 2 | divsasswd.3 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ No ) | |
| 3 | divsasswd.4 | . . . . 5 ⊢ (𝜑 → 𝐶 ≠ 0s ) | |
| 4 | divsasswd.5 | . . . . 5 ⊢ (𝜑 → ∃𝑥 ∈ No (𝐶 ·s 𝑥) = 1s ) | |
| 5 | 1, 2, 3, 4 | divscan2wd 28139 | . . . 4 ⊢ (𝜑 → (𝐶 ·s (𝐵 /su 𝐶)) = 𝐵) |
| 6 | 5 | oveq2d 7419 | . . 3 ⊢ (𝜑 → (𝐴 ·s (𝐶 ·s (𝐵 /su 𝐶))) = (𝐴 ·s 𝐵)) |
| 7 | divsasswd.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 8 | 1, 2, 3, 4 | divsclwd 28138 | . . . 4 ⊢ (𝜑 → (𝐵 /su 𝐶) ∈ No ) |
| 9 | 2, 7, 8 | muls12d 28124 | . . 3 ⊢ (𝜑 → (𝐶 ·s (𝐴 ·s (𝐵 /su 𝐶))) = (𝐴 ·s (𝐶 ·s (𝐵 /su 𝐶)))) |
| 10 | 7, 1 | mulscld 28078 | . . . 4 ⊢ (𝜑 → (𝐴 ·s 𝐵) ∈ No ) |
| 11 | 10, 2, 3, 4 | divscan2wd 28139 | . . 3 ⊢ (𝜑 → (𝐶 ·s ((𝐴 ·s 𝐵) /su 𝐶)) = (𝐴 ·s 𝐵)) |
| 12 | 6, 9, 11 | 3eqtr4rd 2781 | . 2 ⊢ (𝜑 → (𝐶 ·s ((𝐴 ·s 𝐵) /su 𝐶)) = (𝐶 ·s (𝐴 ·s (𝐵 /su 𝐶)))) |
| 13 | 10, 2, 3, 4 | divsclwd 28138 | . . 3 ⊢ (𝜑 → ((𝐴 ·s 𝐵) /su 𝐶) ∈ No ) |
| 14 | 7, 8 | mulscld 28078 | . . 3 ⊢ (𝜑 → (𝐴 ·s (𝐵 /su 𝐶)) ∈ No ) |
| 15 | 13, 14, 2, 3 | mulscan1d 28123 | . 2 ⊢ (𝜑 → ((𝐶 ·s ((𝐴 ·s 𝐵) /su 𝐶)) = (𝐶 ·s (𝐴 ·s (𝐵 /su 𝐶))) ↔ ((𝐴 ·s 𝐵) /su 𝐶) = (𝐴 ·s (𝐵 /su 𝐶)))) |
| 16 | 12, 15 | mpbid 232 | 1 ⊢ (𝜑 → ((𝐴 ·s 𝐵) /su 𝐶) = (𝐴 ·s (𝐵 /su 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∃wrex 3060 (class class class)co 7403 No csur 27601 0s c0s 27784 1s c1s 27785 ·s cmuls 28049 /su cdivs 28130 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-ot 4610 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-1o 8478 df-2o 8479 df-nadd 8676 df-no 27604 df-slt 27605 df-bday 27606 df-sle 27707 df-sslt 27743 df-scut 27745 df-0s 27786 df-1s 27787 df-made 27803 df-old 27804 df-left 27806 df-right 27807 df-norec 27888 df-norec2 27899 df-adds 27910 df-negs 27970 df-subs 27971 df-muls 28050 df-divs 28131 |
| This theorem is referenced by: precsexlem9 28156 divsassd 28172 |
| Copyright terms: Public domain | W3C validator |