MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elbl3 Structured version   Visualization version   GIF version

Theorem elbl3 23545
Description: Membership in a ball, with reversed distance function arguments. (Contributed by NM, 10-Nov-2007.)
Assertion
Ref Expression
elbl3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃𝑋𝐴𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴𝐷𝑃) < 𝑅))

Proof of Theorem elbl3
StepHypRef Expression
1 elbl2 23543 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃𝑋𝐴𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑃𝐷𝐴) < 𝑅))
2 xmetsym 23500 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴𝑋) → (𝑃𝐷𝐴) = (𝐴𝐷𝑃))
323expb 1119 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑃𝑋𝐴𝑋)) → (𝑃𝐷𝐴) = (𝐴𝐷𝑃))
43adantlr 712 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃𝑋𝐴𝑋)) → (𝑃𝐷𝐴) = (𝐴𝐷𝑃))
54breq1d 5084 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃𝑋𝐴𝑋)) → ((𝑃𝐷𝐴) < 𝑅 ↔ (𝐴𝐷𝑃) < 𝑅))
61, 5bitrd 278 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃𝑋𝐴𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴𝐷𝑃) < 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  (class class class)co 7275  *cxr 11008   < clt 11009  ∞Metcxmet 20582  ballcbl 20584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-xadd 12849  df-psmet 20589  df-xmet 20590  df-bl 20592
This theorem is referenced by:  blcom  23547  reperflem  23981  reconnlem2  23990  ellimc3  25043  dvlip2  25159  lhop1lem  25177  ulmdvlem1  25559  pserdvlem2  25587  abelthlem2  25591  abelthlem3  25592  abelthlem5  25594  abelthlem7  25597  efopn  25813  logtayl  25815  xrlimcnp  26118  efrlim  26119  lgamucov  26187  lgamcvg2  26204  tpr2rico  31862  heibor1lem  35967
  Copyright terms: Public domain W3C validator