MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elbl3 Structured version   Visualization version   GIF version

Theorem elbl3 24218
Description: Membership in a ball, with reversed distance function arguments. (Contributed by NM, 10-Nov-2007.)
Assertion
Ref Expression
elbl3 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) β†’ (𝐴 ∈ (𝑃(ballβ€˜π·)𝑅) ↔ (𝐴𝐷𝑃) < 𝑅))

Proof of Theorem elbl3
StepHypRef Expression
1 elbl2 24216 . 2 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) β†’ (𝐴 ∈ (𝑃(ballβ€˜π·)𝑅) ↔ (𝑃𝐷𝐴) < 𝑅))
2 xmetsym 24173 . . . . 5 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) β†’ (𝑃𝐷𝐴) = (𝐴𝐷𝑃))
323expb 1119 . . . 4 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) β†’ (𝑃𝐷𝐴) = (𝐴𝐷𝑃))
43adantlr 712 . . 3 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) β†’ (𝑃𝐷𝐴) = (𝐴𝐷𝑃))
54breq1d 5158 . 2 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) β†’ ((𝑃𝐷𝐴) < 𝑅 ↔ (𝐴𝐷𝑃) < 𝑅))
61, 5bitrd 279 1 (((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) β†’ (𝐴 ∈ (𝑃(ballβ€˜π·)𝑅) ↔ (𝐴𝐷𝑃) < 𝑅))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1540   ∈ wcel 2105   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7412  β„*cxr 11254   < clt 11255  βˆžMetcxmet 21218  ballcbl 21220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-er 8709  df-map 8828  df-en 8946  df-dom 8947  df-sdom 8948  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-xadd 13100  df-psmet 21225  df-xmet 21226  df-bl 21228
This theorem is referenced by:  blcom  24220  reperflem  24654  reconnlem2  24663  ellimc3  25728  dvlip2  25848  lhop1lem  25866  ulmdvlem1  26251  pserdvlem2  26280  abelthlem2  26284  abelthlem3  26285  abelthlem5  26287  abelthlem7  26290  efopn  26506  logtayl  26508  xrlimcnp  26814  efrlim  26815  lgamucov  26883  lgamcvg2  26900  tpr2rico  33356  heibor1lem  37141
  Copyright terms: Public domain W3C validator