Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dochsncom Structured version   Visualization version   GIF version

Theorem dochsncom 41376
Description: Swap vectors in an orthocomplement of a singleton. (Contributed by NM, 17-Jun-2015.)
Hypotheses
Ref Expression
dochsncom.h 𝐻 = (LHyp‘𝐾)
dochsncom.o = ((ocH‘𝐾)‘𝑊)
dochsncom.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dochsncom.v 𝑉 = (Base‘𝑈)
dochsncom.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dochsncom.x (𝜑𝑋𝑉)
dochsncom.y (𝜑𝑌𝑉)
Assertion
Ref Expression
dochsncom (𝜑 → (𝑋 ∈ ( ‘{𝑌}) ↔ 𝑌 ∈ ( ‘{𝑋})))

Proof of Theorem dochsncom
StepHypRef Expression
1 dochsncom.h . . . 4 𝐻 = (LHyp‘𝐾)
2 eqid 2729 . . . 4 ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊)
3 dochsncom.o . . . 4 = ((ocH‘𝐾)‘𝑊)
4 dochsncom.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
5 dochsncom.x . . . . 5 (𝜑𝑋𝑉)
6 dochsncom.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
7 dochsncom.v . . . . . 6 𝑉 = (Base‘𝑈)
8 eqid 2729 . . . . . 6 (LSpan‘𝑈) = (LSpan‘𝑈)
91, 6, 7, 8, 2dihlsprn 41325 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑉) → ((LSpan‘𝑈)‘{𝑋}) ∈ ran ((DIsoH‘𝐾)‘𝑊))
104, 5, 9syl2anc 584 . . . 4 (𝜑 → ((LSpan‘𝑈)‘{𝑋}) ∈ ran ((DIsoH‘𝐾)‘𝑊))
11 dochsncom.y . . . . 5 (𝜑𝑌𝑉)
121, 6, 7, 8, 2dihlsprn 41325 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑌𝑉) → ((LSpan‘𝑈)‘{𝑌}) ∈ ran ((DIsoH‘𝐾)‘𝑊))
134, 11, 12syl2anc 584 . . . 4 (𝜑 → ((LSpan‘𝑈)‘{𝑌}) ∈ ran ((DIsoH‘𝐾)‘𝑊))
141, 2, 3, 4, 10, 13dochord3 41366 . . 3 (𝜑 → (((LSpan‘𝑈)‘{𝑋}) ⊆ ( ‘((LSpan‘𝑈)‘{𝑌})) ↔ ((LSpan‘𝑈)‘{𝑌}) ⊆ ( ‘((LSpan‘𝑈)‘{𝑋}))))
1511snssd 4773 . . . . 5 (𝜑 → {𝑌} ⊆ 𝑉)
161, 6, 3, 7, 8, 4, 15dochocsp 41373 . . . 4 (𝜑 → ( ‘((LSpan‘𝑈)‘{𝑌})) = ( ‘{𝑌}))
1716sseq2d 3979 . . 3 (𝜑 → (((LSpan‘𝑈)‘{𝑋}) ⊆ ( ‘((LSpan‘𝑈)‘{𝑌})) ↔ ((LSpan‘𝑈)‘{𝑋}) ⊆ ( ‘{𝑌})))
185snssd 4773 . . . . 5 (𝜑 → {𝑋} ⊆ 𝑉)
191, 6, 3, 7, 8, 4, 18dochocsp 41373 . . . 4 (𝜑 → ( ‘((LSpan‘𝑈)‘{𝑋})) = ( ‘{𝑋}))
2019sseq2d 3979 . . 3 (𝜑 → (((LSpan‘𝑈)‘{𝑌}) ⊆ ( ‘((LSpan‘𝑈)‘{𝑋})) ↔ ((LSpan‘𝑈)‘{𝑌}) ⊆ ( ‘{𝑋})))
2114, 17, 203bitr3d 309 . 2 (𝜑 → (((LSpan‘𝑈)‘{𝑋}) ⊆ ( ‘{𝑌}) ↔ ((LSpan‘𝑈)‘{𝑌}) ⊆ ( ‘{𝑋})))
22 eqid 2729 . . 3 (LSubSp‘𝑈) = (LSubSp‘𝑈)
231, 6, 4dvhlmod 41104 . . 3 (𝜑𝑈 ∈ LMod)
241, 6, 7, 22, 3dochlss 41348 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ {𝑌} ⊆ 𝑉) → ( ‘{𝑌}) ∈ (LSubSp‘𝑈))
254, 15, 24syl2anc 584 . . 3 (𝜑 → ( ‘{𝑌}) ∈ (LSubSp‘𝑈))
267, 22, 8, 23, 25, 5ellspsn5b 20901 . 2 (𝜑 → (𝑋 ∈ ( ‘{𝑌}) ↔ ((LSpan‘𝑈)‘{𝑋}) ⊆ ( ‘{𝑌})))
271, 6, 7, 22, 3dochlss 41348 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ {𝑋} ⊆ 𝑉) → ( ‘{𝑋}) ∈ (LSubSp‘𝑈))
284, 18, 27syl2anc 584 . . 3 (𝜑 → ( ‘{𝑋}) ∈ (LSubSp‘𝑈))
297, 22, 8, 23, 28, 11ellspsn5b 20901 . 2 (𝜑 → (𝑌 ∈ ( ‘{𝑋}) ↔ ((LSpan‘𝑈)‘{𝑌}) ⊆ ( ‘{𝑋})))
3021, 26, 293bitr4d 311 1 (𝜑 → (𝑋 ∈ ( ‘{𝑌}) ↔ 𝑌 ∈ ( ‘{𝑋})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3914  {csn 4589  ran crn 5639  cfv 6511  Basecbs 17179  LSubSpclss 20837  LSpanclspn 20877  HLchlt 39343  LHypclh 39978  DVecHcdvh 41072  DIsoHcdih 41222  ocHcoch 41341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-riotaBAD 38946
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-undef 8252  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-0g 17404  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-cntz 19249  df-lsm 19566  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-drng 20640  df-lmod 20768  df-lss 20838  df-lsp 20878  df-lvec 21010  df-lsatoms 38969  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-lplanes 39493  df-lvols 39494  df-lines 39495  df-psubsp 39497  df-pmap 39498  df-padd 39790  df-lhyp 39982  df-laut 39983  df-ldil 40098  df-ltrn 40099  df-trl 40153  df-tendo 40749  df-edring 40751  df-disoa 41023  df-dvech 41073  df-dib 41133  df-dic 41167  df-dih 41223  df-doch 41342
This theorem is referenced by:  hdmapip0com  41911  hdmapoc  41925
  Copyright terms: Public domain W3C validator