MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsnne2 Structured version   Visualization version   GIF version

Theorem lspsnne2 21120
Description: Two ways to express that vectors have different spans. (Contributed by NM, 20-May-2015.)
Hypotheses
Ref Expression
lspsnne2.v 𝑉 = (Base‘𝑊)
lspsnne2.n 𝑁 = (LSpan‘𝑊)
lspsnne2.w (𝜑𝑊 ∈ LMod)
lspsnne2.x (𝜑𝑋𝑉)
lspsnne2.y (𝜑𝑌𝑉)
lspsnne2.e (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌}))
Assertion
Ref Expression
lspsnne2 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))

Proof of Theorem lspsnne2
StepHypRef Expression
1 lspsnne2.e . 2 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌}))
2 eqimss 4042 . . . 4 ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌}))
3 lspsnne2.v . . . . 5 𝑉 = (Base‘𝑊)
4 eqid 2737 . . . . 5 (LSubSp‘𝑊) = (LSubSp‘𝑊)
5 lspsnne2.n . . . . 5 𝑁 = (LSpan‘𝑊)
6 lspsnne2.w . . . . 5 (𝜑𝑊 ∈ LMod)
7 lspsnne2.y . . . . . 6 (𝜑𝑌𝑉)
83, 4, 5lspsncl 20975 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
96, 7, 8syl2anc 584 . . . . 5 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
10 lspsnne2.x . . . . 5 (𝜑𝑋𝑉)
113, 4, 5, 6, 9, 10ellspsn5b 20993 . . . 4 (𝜑 → (𝑋 ∈ (𝑁‘{𝑌}) ↔ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌})))
122, 11imbitrrid 246 . . 3 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → 𝑋 ∈ (𝑁‘{𝑌})))
1312necon3bd 2954 . 2 (𝜑 → (¬ 𝑋 ∈ (𝑁‘{𝑌}) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})))
141, 13mpd 15 1 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2108  wne 2940  wss 3951  {csn 4626  cfv 6561  Basecbs 17247  LModclmod 20858  LSubSpclss 20929  LSpanclspn 20969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mgp 20138  df-ur 20179  df-ring 20232  df-lmod 20860  df-lss 20930  df-lsp 20970
This theorem is referenced by:  lspsnnecom  21121  lspexchn1  21132  hdmaplem1  41773  hdmaplem2N  41774  mapdh9a  41791  hdmap1eulem  41824  hdmap11lem1  41843  hdmap11lem2  41844  hdmaprnlem1N  41851  hdmaprnlem3N  41852
  Copyright terms: Public domain W3C validator