| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lspsnss2 | Structured version Visualization version GIF version | ||
| Description: Comparable spans of singletons must have proportional vectors. See lspsneq 21057 for equal span version. (Contributed by NM, 7-Jun-2015.) |
| Ref | Expression |
|---|---|
| lspsnss2.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspsnss2.s | ⊢ 𝑆 = (Scalar‘𝑊) |
| lspsnss2.k | ⊢ 𝐾 = (Base‘𝑆) |
| lspsnss2.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| lspsnss2.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lspsnss2.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lspsnss2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lspsnss2.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| lspsnss2 | ⊢ (𝜑 → ((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌}) ↔ ∃𝑘 ∈ 𝐾 𝑋 = (𝑘 · 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsnss2.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | eqid 2731 | . . 3 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 3 | lspsnss2.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 4 | lspsnss2.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 5 | lspsnss2.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 6 | 1, 2, 3 | lspsncl 20908 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) |
| 7 | 4, 5, 6 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) |
| 8 | lspsnss2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 9 | 1, 2, 3, 4, 7, 8 | ellspsn5b 20926 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘{𝑌}) ↔ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌}))) |
| 10 | lspsnss2.s | . . . 4 ⊢ 𝑆 = (Scalar‘𝑊) | |
| 11 | lspsnss2.k | . . . 4 ⊢ 𝐾 = (Base‘𝑆) | |
| 12 | lspsnss2.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 13 | 10, 11, 1, 12, 3 | ellspsn 20934 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑋 ∈ (𝑁‘{𝑌}) ↔ ∃𝑘 ∈ 𝐾 𝑋 = (𝑘 · 𝑌))) |
| 14 | 4, 5, 13 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘{𝑌}) ↔ ∃𝑘 ∈ 𝐾 𝑋 = (𝑘 · 𝑌))) |
| 15 | 9, 14 | bitr3d 281 | 1 ⊢ (𝜑 → ((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌}) ↔ ∃𝑘 ∈ 𝐾 𝑋 = (𝑘 · 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ⊆ wss 3902 {csn 4576 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 Scalarcsca 17161 ·𝑠 cvsca 17162 LModclmod 20791 LSubSpclss 20862 LSpanclspn 20902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-plusg 17171 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-minusg 18847 df-sbg 18848 df-mgp 20057 df-ur 20098 df-ring 20151 df-lmod 20793 df-lss 20863 df-lsp 20903 |
| This theorem is referenced by: hgmaprnlem3N 41936 |
| Copyright terms: Public domain | W3C validator |