MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsnss2 Structured version   Visualization version   GIF version

Theorem lspsnss2 20926
Description: Comparable spans of singletons must have proportional vectors. See lspsneq 21047 for equal span version. (Contributed by NM, 7-Jun-2015.)
Hypotheses
Ref Expression
lspsnss2.v 𝑉 = (Base‘𝑊)
lspsnss2.s 𝑆 = (Scalar‘𝑊)
lspsnss2.k 𝐾 = (Base‘𝑆)
lspsnss2.t · = ( ·𝑠𝑊)
lspsnss2.n 𝑁 = (LSpan‘𝑊)
lspsnss2.w (𝜑𝑊 ∈ LMod)
lspsnss2.x (𝜑𝑋𝑉)
lspsnss2.y (𝜑𝑌𝑉)
Assertion
Ref Expression
lspsnss2 (𝜑 → ((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌}) ↔ ∃𝑘𝐾 𝑋 = (𝑘 · 𝑌)))
Distinct variable groups:   𝑘,𝐾   𝑘,𝑁   𝑆,𝑘   𝑘,𝑉   𝑘,𝑊   𝑘,𝑋   𝑘,𝑌   · ,𝑘
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem lspsnss2
StepHypRef Expression
1 lspsnss2.v . . 3 𝑉 = (Base‘𝑊)
2 eqid 2729 . . 3 (LSubSp‘𝑊) = (LSubSp‘𝑊)
3 lspsnss2.n . . 3 𝑁 = (LSpan‘𝑊)
4 lspsnss2.w . . 3 (𝜑𝑊 ∈ LMod)
5 lspsnss2.y . . . 4 (𝜑𝑌𝑉)
61, 2, 3lspsncl 20898 . . . 4 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
74, 5, 6syl2anc 584 . . 3 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
8 lspsnss2.x . . 3 (𝜑𝑋𝑉)
91, 2, 3, 4, 7, 8ellspsn5b 20916 . 2 (𝜑 → (𝑋 ∈ (𝑁‘{𝑌}) ↔ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌})))
10 lspsnss2.s . . . 4 𝑆 = (Scalar‘𝑊)
11 lspsnss2.k . . . 4 𝐾 = (Base‘𝑆)
12 lspsnss2.t . . . 4 · = ( ·𝑠𝑊)
1310, 11, 1, 12, 3ellspsn 20924 . . 3 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑋 ∈ (𝑁‘{𝑌}) ↔ ∃𝑘𝐾 𝑋 = (𝑘 · 𝑌)))
144, 5, 13syl2anc 584 . 2 (𝜑 → (𝑋 ∈ (𝑁‘{𝑌}) ↔ ∃𝑘𝐾 𝑋 = (𝑘 · 𝑌)))
159, 14bitr3d 281 1 (𝜑 → ((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌}) ↔ ∃𝑘𝐾 𝑋 = (𝑘 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wrex 3053  wss 3905  {csn 4579  cfv 6486  (class class class)co 7353  Basecbs 17138  Scalarcsca 17182   ·𝑠 cvsca 17183  LModclmod 20781  LSubSpclss 20852  LSpanclspn 20892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mgp 20044  df-ur 20085  df-ring 20138  df-lmod 20783  df-lss 20853  df-lsp 20893
This theorem is referenced by:  hgmaprnlem3N  41877
  Copyright terms: Public domain W3C validator