| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lspsnss2 | Structured version Visualization version GIF version | ||
| Description: Comparable spans of singletons must have proportional vectors. See lspsneq 21061 for equal span version. (Contributed by NM, 7-Jun-2015.) |
| Ref | Expression |
|---|---|
| lspsnss2.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspsnss2.s | ⊢ 𝑆 = (Scalar‘𝑊) |
| lspsnss2.k | ⊢ 𝐾 = (Base‘𝑆) |
| lspsnss2.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| lspsnss2.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lspsnss2.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lspsnss2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lspsnss2.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| lspsnss2 | ⊢ (𝜑 → ((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌}) ↔ ∃𝑘 ∈ 𝐾 𝑋 = (𝑘 · 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsnss2.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | eqid 2733 | . . 3 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 3 | lspsnss2.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 4 | lspsnss2.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 5 | lspsnss2.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 6 | 1, 2, 3 | lspsncl 20912 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) |
| 7 | 4, 5, 6 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) |
| 8 | lspsnss2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 9 | 1, 2, 3, 4, 7, 8 | ellspsn5b 20930 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘{𝑌}) ↔ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌}))) |
| 10 | lspsnss2.s | . . . 4 ⊢ 𝑆 = (Scalar‘𝑊) | |
| 11 | lspsnss2.k | . . . 4 ⊢ 𝐾 = (Base‘𝑆) | |
| 12 | lspsnss2.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 13 | 10, 11, 1, 12, 3 | ellspsn 20938 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑋 ∈ (𝑁‘{𝑌}) ↔ ∃𝑘 ∈ 𝐾 𝑋 = (𝑘 · 𝑌))) |
| 14 | 4, 5, 13 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘{𝑌}) ↔ ∃𝑘 ∈ 𝐾 𝑋 = (𝑘 · 𝑌))) |
| 15 | 9, 14 | bitr3d 281 | 1 ⊢ (𝜑 → ((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌}) ↔ ∃𝑘 ∈ 𝐾 𝑋 = (𝑘 · 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 ⊆ wss 3898 {csn 4575 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 Scalarcsca 17166 ·𝑠 cvsca 17167 LModclmod 20795 LSubSpclss 20866 LSpanclspn 20906 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-plusg 17176 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-minusg 18852 df-sbg 18853 df-mgp 20061 df-ur 20102 df-ring 20155 df-lmod 20797 df-lss 20867 df-lsp 20907 |
| This theorem is referenced by: hgmaprnlem3N 42017 |
| Copyright terms: Public domain | W3C validator |