MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ellspsn5 Structured version   Visualization version   GIF version

Theorem ellspsn5 20909
Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 20-Feb-2015.)
Hypotheses
Ref Expression
ellspsn5.s 𝑆 = (LSubSp‘𝑊)
ellspsn5.n 𝑁 = (LSpan‘𝑊)
ellspsn5.w (𝜑𝑊 ∈ LMod)
ellspsn5.a (𝜑𝑈𝑆)
ellspsn5.x (𝜑𝑋𝑈)
Assertion
Ref Expression
ellspsn5 (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈)

Proof of Theorem ellspsn5
StepHypRef Expression
1 ellspsn5.x . 2 (𝜑𝑋𝑈)
2 eqid 2730 . . 3 (Base‘𝑊) = (Base‘𝑊)
3 ellspsn5.s . . 3 𝑆 = (LSubSp‘𝑊)
4 ellspsn5.n . . 3 𝑁 = (LSpan‘𝑊)
5 ellspsn5.w . . 3 (𝜑𝑊 ∈ LMod)
6 ellspsn5.a . . 3 (𝜑𝑈𝑆)
72, 3lssel 20850 . . . 4 ((𝑈𝑆𝑋𝑈) → 𝑋 ∈ (Base‘𝑊))
86, 1, 7syl2anc 584 . . 3 (𝜑𝑋 ∈ (Base‘𝑊))
92, 3, 4, 5, 6, 8ellspsn5b 20908 . 2 (𝜑 → (𝑋𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈))
101, 9mpbid 232 1 (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3917  {csn 4592  cfv 6514  Basecbs 17186  LModclmod 20773  LSubSpclss 20844  LSpanclspn 20884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-lmod 20775  df-lss 20845  df-lsp 20885
This theorem is referenced by:  lssats2  20913  lspsn  20915  lspsnvsi  20917  lsmelval2  20999  lspprabs  21009  lspvadd  21010  lspabs3  21038  lsmcv  21058  lspsnat  21062  lsppratlem6  21069  issubassa2  21808  lshpnel  38983  lsatel  39005  lsmsat  39008  lssatomic  39011  lssats  39012  lsat0cv  39033  dia2dimlem10  41074  dochsatshpb  41453  lclkrlem2f  41513  lcfrlem25  41568  lcfrlem35  41578  mapdval2N  41631  mapdrvallem2  41646  mapdpglem8  41680  mapdpglem13  41685  mapdindp0  41720  mapdh6aN  41736  mapdh8e  41785  mapdh9a  41790  hdmap1l6a  41810  hdmapval0  41834  hdmapval3lemN  41838  hdmap10lem  41840  hdmap11lem1  41842  hdmap11lem2  41843  hdmaprnlem4N  41854  hdmaprnlem3eN  41859
  Copyright terms: Public domain W3C validator