| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ellspsn5 | Structured version Visualization version GIF version | ||
| Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 20-Feb-2015.) |
| Ref | Expression |
|---|---|
| ellspsn5.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| ellspsn5.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| ellspsn5.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| ellspsn5.a | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| ellspsn5.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| ellspsn5 | ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellspsn5.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
| 2 | eqid 2729 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 3 | ellspsn5.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 4 | ellspsn5.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 5 | ellspsn5.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 6 | ellspsn5.a | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 7 | 2, 3 | lssel 20819 | . . . 4 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ (Base‘𝑊)) |
| 8 | 6, 1, 7 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑊)) |
| 9 | 2, 3, 4, 5, 6, 8 | ellspsn5b 20877 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈)) |
| 10 | 1, 9 | mpbid 232 | 1 ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 {csn 4585 ‘cfv 6499 Basecbs 17155 LModclmod 20742 LSubSpclss 20813 LSpanclspn 20853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-lmod 20744 df-lss 20814 df-lsp 20854 |
| This theorem is referenced by: lssats2 20882 lspsn 20884 lspsnvsi 20886 lsmelval2 20968 lspprabs 20978 lspvadd 20979 lspabs3 21007 lsmcv 21027 lspsnat 21031 lsppratlem6 21038 issubassa2 21777 lshpnel 38949 lsatel 38971 lsmsat 38974 lssatomic 38977 lssats 38978 lsat0cv 38999 dia2dimlem10 41040 dochsatshpb 41419 lclkrlem2f 41479 lcfrlem25 41534 lcfrlem35 41544 mapdval2N 41597 mapdrvallem2 41612 mapdpglem8 41646 mapdpglem13 41651 mapdindp0 41686 mapdh6aN 41702 mapdh8e 41751 mapdh9a 41756 hdmap1l6a 41776 hdmapval0 41800 hdmapval3lemN 41804 hdmap10lem 41806 hdmap11lem1 41808 hdmap11lem2 41809 hdmaprnlem4N 41820 hdmaprnlem3eN 41825 |
| Copyright terms: Public domain | W3C validator |