MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ellspsn5 Structured version   Visualization version   GIF version

Theorem ellspsn5 20938
Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 20-Feb-2015.)
Hypotheses
Ref Expression
ellspsn5.s 𝑆 = (LSubSp‘𝑊)
ellspsn5.n 𝑁 = (LSpan‘𝑊)
ellspsn5.w (𝜑𝑊 ∈ LMod)
ellspsn5.a (𝜑𝑈𝑆)
ellspsn5.x (𝜑𝑋𝑈)
Assertion
Ref Expression
ellspsn5 (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈)

Proof of Theorem ellspsn5
StepHypRef Expression
1 ellspsn5.x . 2 (𝜑𝑋𝑈)
2 eqid 2733 . . 3 (Base‘𝑊) = (Base‘𝑊)
3 ellspsn5.s . . 3 𝑆 = (LSubSp‘𝑊)
4 ellspsn5.n . . 3 𝑁 = (LSpan‘𝑊)
5 ellspsn5.w . . 3 (𝜑𝑊 ∈ LMod)
6 ellspsn5.a . . 3 (𝜑𝑈𝑆)
72, 3lssel 20879 . . . 4 ((𝑈𝑆𝑋𝑈) → 𝑋 ∈ (Base‘𝑊))
86, 1, 7syl2anc 584 . . 3 (𝜑𝑋 ∈ (Base‘𝑊))
92, 3, 4, 5, 6, 8ellspsn5b 20937 . 2 (𝜑 → (𝑋𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈))
101, 9mpbid 232 1 (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  wss 3898  {csn 4577  cfv 6489  Basecbs 17127  LModclmod 20802  LSubSpclss 20873  LSpanclspn 20913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-0g 17352  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-grp 18857  df-lmod 20804  df-lss 20874  df-lsp 20914
This theorem is referenced by:  lssats2  20942  lspsn  20944  lspsnvsi  20946  lsmelval2  21028  lspprabs  21038  lspvadd  21039  lspabs3  21067  lsmcv  21087  lspsnat  21091  lsppratlem6  21098  issubassa2  21839  lshpnel  39155  lsatel  39177  lsmsat  39180  lssatomic  39183  lssats  39184  lsat0cv  39205  dia2dimlem10  41245  dochsatshpb  41624  lclkrlem2f  41684  lcfrlem25  41739  lcfrlem35  41749  mapdval2N  41802  mapdrvallem2  41817  mapdpglem8  41851  mapdpglem13  41856  mapdindp0  41891  mapdh6aN  41907  mapdh8e  41956  mapdh9a  41961  hdmap1l6a  41981  hdmapval0  42005  hdmapval3lemN  42009  hdmap10lem  42011  hdmap11lem1  42013  hdmap11lem2  42014  hdmaprnlem4N  42025  hdmaprnlem3eN  42030
  Copyright terms: Public domain W3C validator