MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ellspsn5 Structured version   Visualization version   GIF version

Theorem ellspsn5 20902
Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 20-Feb-2015.)
Hypotheses
Ref Expression
ellspsn5.s 𝑆 = (LSubSp‘𝑊)
ellspsn5.n 𝑁 = (LSpan‘𝑊)
ellspsn5.w (𝜑𝑊 ∈ LMod)
ellspsn5.a (𝜑𝑈𝑆)
ellspsn5.x (𝜑𝑋𝑈)
Assertion
Ref Expression
ellspsn5 (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈)

Proof of Theorem ellspsn5
StepHypRef Expression
1 ellspsn5.x . 2 (𝜑𝑋𝑈)
2 eqid 2729 . . 3 (Base‘𝑊) = (Base‘𝑊)
3 ellspsn5.s . . 3 𝑆 = (LSubSp‘𝑊)
4 ellspsn5.n . . 3 𝑁 = (LSpan‘𝑊)
5 ellspsn5.w . . 3 (𝜑𝑊 ∈ LMod)
6 ellspsn5.a . . 3 (𝜑𝑈𝑆)
72, 3lssel 20843 . . . 4 ((𝑈𝑆𝑋𝑈) → 𝑋 ∈ (Base‘𝑊))
86, 1, 7syl2anc 584 . . 3 (𝜑𝑋 ∈ (Base‘𝑊))
92, 3, 4, 5, 6, 8ellspsn5b 20901 . 2 (𝜑 → (𝑋𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈))
101, 9mpbid 232 1 (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3914  {csn 4589  cfv 6511  Basecbs 17179  LModclmod 20766  LSubSpclss 20837  LSpanclspn 20877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-lmod 20768  df-lss 20838  df-lsp 20878
This theorem is referenced by:  lssats2  20906  lspsn  20908  lspsnvsi  20910  lsmelval2  20992  lspprabs  21002  lspvadd  21003  lspabs3  21031  lsmcv  21051  lspsnat  21055  lsppratlem6  21062  issubassa2  21801  lshpnel  38976  lsatel  38998  lsmsat  39001  lssatomic  39004  lssats  39005  lsat0cv  39026  dia2dimlem10  41067  dochsatshpb  41446  lclkrlem2f  41506  lcfrlem25  41561  lcfrlem35  41571  mapdval2N  41624  mapdrvallem2  41639  mapdpglem8  41673  mapdpglem13  41678  mapdindp0  41713  mapdh6aN  41729  mapdh8e  41778  mapdh9a  41783  hdmap1l6a  41803  hdmapval0  41827  hdmapval3lemN  41831  hdmap10lem  41833  hdmap11lem1  41835  hdmap11lem2  41836  hdmaprnlem4N  41847  hdmaprnlem3eN  41852
  Copyright terms: Public domain W3C validator