| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ellspsn5 | Structured version Visualization version GIF version | ||
| Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 20-Feb-2015.) |
| Ref | Expression |
|---|---|
| ellspsn5.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| ellspsn5.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| ellspsn5.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| ellspsn5.a | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| ellspsn5.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| ellspsn5 | ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellspsn5.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
| 2 | eqid 2731 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 3 | ellspsn5.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 4 | ellspsn5.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 5 | ellspsn5.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 6 | ellspsn5.a | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 7 | 2, 3 | lssel 20865 | . . . 4 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ (Base‘𝑊)) |
| 8 | 6, 1, 7 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑊)) |
| 9 | 2, 3, 4, 5, 6, 8 | ellspsn5b 20923 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈)) |
| 10 | 1, 9 | mpbid 232 | 1 ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 {csn 4571 ‘cfv 6476 Basecbs 17115 LModclmod 20788 LSubSpclss 20859 LSpanclspn 20899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-0g 17340 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-lmod 20790 df-lss 20860 df-lsp 20900 |
| This theorem is referenced by: lssats2 20928 lspsn 20930 lspsnvsi 20932 lsmelval2 21014 lspprabs 21024 lspvadd 21025 lspabs3 21053 lsmcv 21073 lspsnat 21077 lsppratlem6 21084 issubassa2 21824 lshpnel 39022 lsatel 39044 lsmsat 39047 lssatomic 39050 lssats 39051 lsat0cv 39072 dia2dimlem10 41112 dochsatshpb 41491 lclkrlem2f 41551 lcfrlem25 41606 lcfrlem35 41616 mapdval2N 41669 mapdrvallem2 41684 mapdpglem8 41718 mapdpglem13 41723 mapdindp0 41758 mapdh6aN 41774 mapdh8e 41823 mapdh9a 41828 hdmap1l6a 41848 hdmapval0 41872 hdmapval3lemN 41876 hdmap10lem 41878 hdmap11lem1 41880 hdmap11lem2 41881 hdmaprnlem4N 41892 hdmaprnlem3eN 41897 |
| Copyright terms: Public domain | W3C validator |