| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ellspsn5 | Structured version Visualization version GIF version | ||
| Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 20-Feb-2015.) |
| Ref | Expression |
|---|---|
| ellspsn5.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| ellspsn5.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| ellspsn5.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| ellspsn5.a | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| ellspsn5.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| ellspsn5 | ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellspsn5.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
| 2 | eqid 2729 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 3 | ellspsn5.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 4 | ellspsn5.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 5 | ellspsn5.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 6 | ellspsn5.a | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 7 | 2, 3 | lssel 20858 | . . . 4 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ (Base‘𝑊)) |
| 8 | 6, 1, 7 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑊)) |
| 9 | 2, 3, 4, 5, 6, 8 | ellspsn5b 20916 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈)) |
| 10 | 1, 9 | mpbid 232 | 1 ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 {csn 4579 ‘cfv 6486 Basecbs 17138 LModclmod 20781 LSubSpclss 20852 LSpanclspn 20892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-lmod 20783 df-lss 20853 df-lsp 20893 |
| This theorem is referenced by: lssats2 20921 lspsn 20923 lspsnvsi 20925 lsmelval2 21007 lspprabs 21017 lspvadd 21018 lspabs3 21046 lsmcv 21066 lspsnat 21070 lsppratlem6 21077 issubassa2 21817 lshpnel 38964 lsatel 38986 lsmsat 38989 lssatomic 38992 lssats 38993 lsat0cv 39014 dia2dimlem10 41055 dochsatshpb 41434 lclkrlem2f 41494 lcfrlem25 41549 lcfrlem35 41559 mapdval2N 41612 mapdrvallem2 41627 mapdpglem8 41661 mapdpglem13 41666 mapdindp0 41701 mapdh6aN 41717 mapdh8e 41766 mapdh9a 41771 hdmap1l6a 41791 hdmapval0 41815 hdmapval3lemN 41819 hdmap10lem 41821 hdmap11lem1 41823 hdmap11lem2 41824 hdmaprnlem4N 41835 hdmaprnlem3eN 41840 |
| Copyright terms: Public domain | W3C validator |