| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ellspsn5 | Structured version Visualization version GIF version | ||
| Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 20-Feb-2015.) |
| Ref | Expression |
|---|---|
| ellspsn5.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| ellspsn5.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| ellspsn5.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| ellspsn5.a | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| ellspsn5.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| ellspsn5 | ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellspsn5.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
| 2 | eqid 2730 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 3 | ellspsn5.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 4 | ellspsn5.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 5 | ellspsn5.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 6 | ellspsn5.a | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 7 | 2, 3 | lssel 20850 | . . . 4 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ (Base‘𝑊)) |
| 8 | 6, 1, 7 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑊)) |
| 9 | 2, 3, 4, 5, 6, 8 | ellspsn5b 20908 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈)) |
| 10 | 1, 9 | mpbid 232 | 1 ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 {csn 4592 ‘cfv 6514 Basecbs 17186 LModclmod 20773 LSubSpclss 20844 LSpanclspn 20884 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-lmod 20775 df-lss 20845 df-lsp 20885 |
| This theorem is referenced by: lssats2 20913 lspsn 20915 lspsnvsi 20917 lsmelval2 20999 lspprabs 21009 lspvadd 21010 lspabs3 21038 lsmcv 21058 lspsnat 21062 lsppratlem6 21069 issubassa2 21808 lshpnel 38983 lsatel 39005 lsmsat 39008 lssatomic 39011 lssats 39012 lsat0cv 39033 dia2dimlem10 41074 dochsatshpb 41453 lclkrlem2f 41513 lcfrlem25 41568 lcfrlem35 41578 mapdval2N 41631 mapdrvallem2 41646 mapdpglem8 41680 mapdpglem13 41685 mapdindp0 41720 mapdh6aN 41736 mapdh8e 41785 mapdh9a 41790 hdmap1l6a 41810 hdmapval0 41834 hdmapval3lemN 41838 hdmap10lem 41840 hdmap11lem1 41842 hdmap11lem2 41843 hdmaprnlem4N 41854 hdmaprnlem3eN 41859 |
| Copyright terms: Public domain | W3C validator |