MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ellspsn5 Structured version   Visualization version   GIF version

Theorem ellspsn5 20878
Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 20-Feb-2015.)
Hypotheses
Ref Expression
ellspsn5.s 𝑆 = (LSubSp‘𝑊)
ellspsn5.n 𝑁 = (LSpan‘𝑊)
ellspsn5.w (𝜑𝑊 ∈ LMod)
ellspsn5.a (𝜑𝑈𝑆)
ellspsn5.x (𝜑𝑋𝑈)
Assertion
Ref Expression
ellspsn5 (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈)

Proof of Theorem ellspsn5
StepHypRef Expression
1 ellspsn5.x . 2 (𝜑𝑋𝑈)
2 eqid 2729 . . 3 (Base‘𝑊) = (Base‘𝑊)
3 ellspsn5.s . . 3 𝑆 = (LSubSp‘𝑊)
4 ellspsn5.n . . 3 𝑁 = (LSpan‘𝑊)
5 ellspsn5.w . . 3 (𝜑𝑊 ∈ LMod)
6 ellspsn5.a . . 3 (𝜑𝑈𝑆)
72, 3lssel 20819 . . . 4 ((𝑈𝑆𝑋𝑈) → 𝑋 ∈ (Base‘𝑊))
86, 1, 7syl2anc 584 . . 3 (𝜑𝑋 ∈ (Base‘𝑊))
92, 3, 4, 5, 6, 8ellspsn5b 20877 . 2 (𝜑 → (𝑋𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈))
101, 9mpbid 232 1 (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3911  {csn 4585  cfv 6499  Basecbs 17155  LModclmod 20742  LSubSpclss 20813  LSpanclspn 20853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-lmod 20744  df-lss 20814  df-lsp 20854
This theorem is referenced by:  lssats2  20882  lspsn  20884  lspsnvsi  20886  lsmelval2  20968  lspprabs  20978  lspvadd  20979  lspabs3  21007  lsmcv  21027  lspsnat  21031  lsppratlem6  21038  issubassa2  21777  lshpnel  38949  lsatel  38971  lsmsat  38974  lssatomic  38977  lssats  38978  lsat0cv  38999  dia2dimlem10  41040  dochsatshpb  41419  lclkrlem2f  41479  lcfrlem25  41534  lcfrlem35  41544  mapdval2N  41597  mapdrvallem2  41612  mapdpglem8  41646  mapdpglem13  41651  mapdindp0  41686  mapdh6aN  41702  mapdh8e  41751  mapdh9a  41756  hdmap1l6a  41776  hdmapval0  41800  hdmapval3lemN  41804  hdmap10lem  41806  hdmap11lem1  41808  hdmap11lem2  41809  hdmaprnlem4N  41820  hdmaprnlem3eN  41825
  Copyright terms: Public domain W3C validator