| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ellspsn5 | Structured version Visualization version GIF version | ||
| Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 20-Feb-2015.) |
| Ref | Expression |
|---|---|
| ellspsn5.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| ellspsn5.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| ellspsn5.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| ellspsn5.a | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| ellspsn5.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| ellspsn5 | ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellspsn5.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
| 2 | eqid 2735 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 3 | ellspsn5.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 4 | ellspsn5.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 5 | ellspsn5.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 6 | ellspsn5.a | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 7 | 2, 3 | lssel 20894 | . . . 4 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ (Base‘𝑊)) |
| 8 | 6, 1, 7 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑊)) |
| 9 | 2, 3, 4, 5, 6, 8 | ellspsn5b 20952 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈)) |
| 10 | 1, 9 | mpbid 232 | 1 ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 {csn 4601 ‘cfv 6531 Basecbs 17228 LModclmod 20817 LSubSpclss 20888 LSpanclspn 20928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-lmod 20819 df-lss 20889 df-lsp 20929 |
| This theorem is referenced by: lssats2 20957 lspsn 20959 lspsnvsi 20961 lsmelval2 21043 lspprabs 21053 lspvadd 21054 lspabs3 21082 lsmcv 21102 lspsnat 21106 lsppratlem6 21113 issubassa2 21852 lshpnel 39001 lsatel 39023 lsmsat 39026 lssatomic 39029 lssats 39030 lsat0cv 39051 dia2dimlem10 41092 dochsatshpb 41471 lclkrlem2f 41531 lcfrlem25 41586 lcfrlem35 41596 mapdval2N 41649 mapdrvallem2 41664 mapdpglem8 41698 mapdpglem13 41703 mapdindp0 41738 mapdh6aN 41754 mapdh8e 41803 mapdh9a 41808 hdmap1l6a 41828 hdmapval0 41852 hdmapval3lemN 41856 hdmap10lem 41858 hdmap11lem1 41860 hdmap11lem2 41861 hdmaprnlem4N 41872 hdmaprnlem3eN 41877 |
| Copyright terms: Public domain | W3C validator |