MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspindpi Structured version   Visualization version   GIF version

Theorem lspindpi 21071
Description: Partial independence property. (Contributed by NM, 23-Apr-2015.)
Hypotheses
Ref Expression
lspindpi.v 𝑉 = (Base‘𝑊)
lspindpi.n 𝑁 = (LSpan‘𝑊)
lspindpi.w (𝜑𝑊 ∈ LVec)
lspindpi.x (𝜑𝑋𝑉)
lspindpi.y (𝜑𝑌𝑉)
lspindpi.z (𝜑𝑍𝑉)
lspindpi.e (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
Assertion
Ref Expression
lspindpi (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})))

Proof of Theorem lspindpi
StepHypRef Expression
1 lspindpi.e . . 3 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
2 lspindpi.w . . . . . . . . . . 11 (𝜑𝑊 ∈ LVec)
3 lveclmod 21042 . . . . . . . . . . 11 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
42, 3syl 17 . . . . . . . . . 10 (𝜑𝑊 ∈ LMod)
5 eqid 2733 . . . . . . . . . . 11 (LSubSp‘𝑊) = (LSubSp‘𝑊)
65lsssssubg 20893 . . . . . . . . . 10 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
74, 6syl 17 . . . . . . . . 9 (𝜑 → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
8 lspindpi.y . . . . . . . . . 10 (𝜑𝑌𝑉)
9 lspindpi.v . . . . . . . . . . 11 𝑉 = (Base‘𝑊)
10 lspindpi.n . . . . . . . . . . 11 𝑁 = (LSpan‘𝑊)
119, 5, 10lspsncl 20912 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
124, 8, 11syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
137, 12sseldd 3931 . . . . . . . 8 (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
14 lspindpi.z . . . . . . . . . 10 (𝜑𝑍𝑉)
159, 5, 10lspsncl 20912 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
164, 14, 15syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
177, 16sseldd 3931 . . . . . . . 8 (𝜑 → (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊))
18 eqid 2733 . . . . . . . . 9 (LSSum‘𝑊) = (LSSum‘𝑊)
1918lsmub1 19571 . . . . . . . 8 (((𝑁‘{𝑌}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊)) → (𝑁‘{𝑌}) ⊆ ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})))
2013, 17, 19syl2anc 584 . . . . . . 7 (𝜑 → (𝑁‘{𝑌}) ⊆ ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})))
219, 10, 18, 4, 8, 14lsmpr 21025 . . . . . . 7 (𝜑 → (𝑁‘{𝑌, 𝑍}) = ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})))
2220, 21sseqtrrd 3968 . . . . . 6 (𝜑 → (𝑁‘{𝑌}) ⊆ (𝑁‘{𝑌, 𝑍}))
23 sseq1 3956 . . . . . 6 ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → ((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑌}) ⊆ (𝑁‘{𝑌, 𝑍})))
2422, 23syl5ibrcom 247 . . . . 5 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍})))
259, 5, 10, 4, 8, 14lspprcl 20913 . . . . . 6 (𝜑 → (𝑁‘{𝑌, 𝑍}) ∈ (LSubSp‘𝑊))
26 lspindpi.x . . . . . 6 (𝜑𝑋𝑉)
279, 5, 10, 4, 25, 26ellspsn5b 20930 . . . . 5 (𝜑 → (𝑋 ∈ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍})))
2824, 27sylibrd 259 . . . 4 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → 𝑋 ∈ (𝑁‘{𝑌, 𝑍})))
2928necon3bd 2943 . . 3 (𝜑 → (¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})))
301, 29mpd 15 . 2 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
3118lsmub2 19572 . . . . . . . 8 (((𝑁‘{𝑌}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊)) → (𝑁‘{𝑍}) ⊆ ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})))
3213, 17, 31syl2anc 584 . . . . . . 7 (𝜑 → (𝑁‘{𝑍}) ⊆ ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})))
3332, 21sseqtrrd 3968 . . . . . 6 (𝜑 → (𝑁‘{𝑍}) ⊆ (𝑁‘{𝑌, 𝑍}))
34 sseq1 3956 . . . . . 6 ((𝑁‘{𝑋}) = (𝑁‘{𝑍}) → ((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑍}) ⊆ (𝑁‘{𝑌, 𝑍})))
3533, 34syl5ibrcom 247 . . . . 5 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑍}) → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍})))
3635, 27sylibrd 259 . . . 4 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑍}) → 𝑋 ∈ (𝑁‘{𝑌, 𝑍})))
3736necon3bd 2943 . . 3 (𝜑 → (¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})))
381, 37mpd 15 . 2 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
3930, 38jca 511 1 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  wss 3898  {csn 4575  {cpr 4577  cfv 6486  (class class class)co 7352  Basecbs 17122  SubGrpcsubg 19035  LSSumclsm 19548  LModclmod 20795  LSubSpclss 20866  LSpanclspn 20906  LVecclvec 21038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-grp 18851  df-minusg 18852  df-sbg 18853  df-subg 19038  df-cntz 19231  df-lsm 19550  df-cmn 19696  df-abl 19697  df-mgp 20061  df-ur 20102  df-ring 20155  df-lmod 20797  df-lss 20867  df-lsp 20907  df-lvec 21039
This theorem is referenced by:  lspindp1  21072  baerlem5amN  41835  baerlem5bmN  41836  baerlem5abmN  41837  mapdindp4  41842  mapdh6bN  41856  mapdh6cN  41857  mapdh6dN  41858  mapdh6eN  41859  mapdh6fN  41860  mapdh6hN  41862  mapdh7eN  41867  mapdh7dN  41869  mapdh7fN  41870  mapdh75fN  41874  mapdh8aa  41895  mapdh8ab  41896  mapdh8ad  41898  mapdh8c  41900  mapdh8d0N  41901  mapdh8d  41902  mapdh8e  41903  mapdh9a  41908  mapdh9aOLDN  41909  hdmap1eq4N  41925  hdmap1l6b  41930  hdmap1l6c  41931  hdmap1l6d  41932  hdmap1l6e  41933  hdmap1l6f  41934  hdmap1l6h  41936  hdmap1eulemOLDN  41942  hdmapval0  41952  hdmapval3lemN  41956  hdmap10lem  41958  hdmap11lem1  41960  hdmap14lem11  41997
  Copyright terms: Public domain W3C validator