MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspindpi Structured version   Visualization version   GIF version

Theorem lspindpi 21135
Description: Partial independence property. (Contributed by NM, 23-Apr-2015.)
Hypotheses
Ref Expression
lspindpi.v 𝑉 = (Base‘𝑊)
lspindpi.n 𝑁 = (LSpan‘𝑊)
lspindpi.w (𝜑𝑊 ∈ LVec)
lspindpi.x (𝜑𝑋𝑉)
lspindpi.y (𝜑𝑌𝑉)
lspindpi.z (𝜑𝑍𝑉)
lspindpi.e (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
Assertion
Ref Expression
lspindpi (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})))

Proof of Theorem lspindpi
StepHypRef Expression
1 lspindpi.e . . 3 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
2 lspindpi.w . . . . . . . . . . 11 (𝜑𝑊 ∈ LVec)
3 lveclmod 21106 . . . . . . . . . . 11 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
42, 3syl 17 . . . . . . . . . 10 (𝜑𝑊 ∈ LMod)
5 eqid 2736 . . . . . . . . . . 11 (LSubSp‘𝑊) = (LSubSp‘𝑊)
65lsssssubg 20957 . . . . . . . . . 10 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
74, 6syl 17 . . . . . . . . 9 (𝜑 → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
8 lspindpi.y . . . . . . . . . 10 (𝜑𝑌𝑉)
9 lspindpi.v . . . . . . . . . . 11 𝑉 = (Base‘𝑊)
10 lspindpi.n . . . . . . . . . . 11 𝑁 = (LSpan‘𝑊)
119, 5, 10lspsncl 20976 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
124, 8, 11syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
137, 12sseldd 3983 . . . . . . . 8 (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊))
14 lspindpi.z . . . . . . . . . 10 (𝜑𝑍𝑉)
159, 5, 10lspsncl 20976 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
164, 14, 15syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
177, 16sseldd 3983 . . . . . . . 8 (𝜑 → (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊))
18 eqid 2736 . . . . . . . . 9 (LSSum‘𝑊) = (LSSum‘𝑊)
1918lsmub1 19676 . . . . . . . 8 (((𝑁‘{𝑌}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊)) → (𝑁‘{𝑌}) ⊆ ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})))
2013, 17, 19syl2anc 584 . . . . . . 7 (𝜑 → (𝑁‘{𝑌}) ⊆ ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})))
219, 10, 18, 4, 8, 14lsmpr 21089 . . . . . . 7 (𝜑 → (𝑁‘{𝑌, 𝑍}) = ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})))
2220, 21sseqtrrd 4020 . . . . . 6 (𝜑 → (𝑁‘{𝑌}) ⊆ (𝑁‘{𝑌, 𝑍}))
23 sseq1 4008 . . . . . 6 ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → ((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑌}) ⊆ (𝑁‘{𝑌, 𝑍})))
2422, 23syl5ibrcom 247 . . . . 5 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍})))
259, 5, 10, 4, 8, 14lspprcl 20977 . . . . . 6 (𝜑 → (𝑁‘{𝑌, 𝑍}) ∈ (LSubSp‘𝑊))
26 lspindpi.x . . . . . 6 (𝜑𝑋𝑉)
279, 5, 10, 4, 25, 26ellspsn5b 20994 . . . . 5 (𝜑 → (𝑋 ∈ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍})))
2824, 27sylibrd 259 . . . 4 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → 𝑋 ∈ (𝑁‘{𝑌, 𝑍})))
2928necon3bd 2953 . . 3 (𝜑 → (¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})))
301, 29mpd 15 . 2 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
3118lsmub2 19677 . . . . . . . 8 (((𝑁‘{𝑌}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊)) → (𝑁‘{𝑍}) ⊆ ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})))
3213, 17, 31syl2anc 584 . . . . . . 7 (𝜑 → (𝑁‘{𝑍}) ⊆ ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍})))
3332, 21sseqtrrd 4020 . . . . . 6 (𝜑 → (𝑁‘{𝑍}) ⊆ (𝑁‘{𝑌, 𝑍}))
34 sseq1 4008 . . . . . 6 ((𝑁‘{𝑋}) = (𝑁‘{𝑍}) → ((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑍}) ⊆ (𝑁‘{𝑌, 𝑍})))
3533, 34syl5ibrcom 247 . . . . 5 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑍}) → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍})))
3635, 27sylibrd 259 . . . 4 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑍}) → 𝑋 ∈ (𝑁‘{𝑌, 𝑍})))
3736necon3bd 2953 . . 3 (𝜑 → (¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})))
381, 37mpd 15 . 2 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
3930, 38jca 511 1 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2939  wss 3950  {csn 4625  {cpr 4627  cfv 6560  (class class class)co 7432  Basecbs 17248  SubGrpcsubg 19139  LSSumclsm 19653  LModclmod 20859  LSubSpclss 20930  LSpanclspn 20970  LVecclvec 21102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-0g 17487  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-grp 18955  df-minusg 18956  df-sbg 18957  df-subg 19142  df-cntz 19336  df-lsm 19655  df-cmn 19801  df-abl 19802  df-mgp 20139  df-ur 20180  df-ring 20233  df-lmod 20861  df-lss 20931  df-lsp 20971  df-lvec 21103
This theorem is referenced by:  lspindp1  21136  baerlem5amN  41719  baerlem5bmN  41720  baerlem5abmN  41721  mapdindp4  41726  mapdh6bN  41740  mapdh6cN  41741  mapdh6dN  41742  mapdh6eN  41743  mapdh6fN  41744  mapdh6hN  41746  mapdh7eN  41751  mapdh7dN  41753  mapdh7fN  41754  mapdh75fN  41758  mapdh8aa  41779  mapdh8ab  41780  mapdh8ad  41782  mapdh8c  41784  mapdh8d0N  41785  mapdh8d  41786  mapdh8e  41787  mapdh9a  41792  mapdh9aOLDN  41793  hdmap1eq4N  41809  hdmap1l6b  41814  hdmap1l6c  41815  hdmap1l6d  41816  hdmap1l6e  41817  hdmap1l6f  41818  hdmap1l6h  41820  hdmap1eulemOLDN  41826  hdmapval0  41836  hdmapval3lemN  41840  hdmap10lem  41842  hdmap11lem1  41844  hdmap14lem11  41881
  Copyright terms: Public domain W3C validator