| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lspindpi | Structured version Visualization version GIF version | ||
| Description: Partial independence property. (Contributed by NM, 23-Apr-2015.) |
| Ref | Expression |
|---|---|
| lspindpi.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspindpi.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lspindpi.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lspindpi.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lspindpi.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| lspindpi.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
| lspindpi.e | ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
| Ref | Expression |
|---|---|
| lspindpi | ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspindpi.e | . . 3 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) | |
| 2 | lspindpi.w | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 3 | lveclmod 21042 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 4 | 2, 3 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 5 | eqid 2733 | . . . . . . . . . . 11 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 6 | 5 | lsssssubg 20893 | . . . . . . . . . 10 ⊢ (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊)) |
| 7 | 4, 6 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊)) |
| 8 | lspindpi.y | . . . . . . . . . 10 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 9 | lspindpi.v | . . . . . . . . . . 11 ⊢ 𝑉 = (Base‘𝑊) | |
| 10 | lspindpi.n | . . . . . . . . . . 11 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 11 | 9, 5, 10 | lspsncl 20912 | . . . . . . . . . 10 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) |
| 12 | 4, 8, 11 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) |
| 13 | 7, 12 | sseldd 3931 | . . . . . . . 8 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (SubGrp‘𝑊)) |
| 14 | lspindpi.z | . . . . . . . . . 10 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
| 15 | 9, 5, 10 | lspsncl 20912 | . . . . . . . . . 10 ⊢ ((𝑊 ∈ LMod ∧ 𝑍 ∈ 𝑉) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊)) |
| 16 | 4, 14, 15 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊)) |
| 17 | 7, 16 | sseldd 3931 | . . . . . . . 8 ⊢ (𝜑 → (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊)) |
| 18 | eqid 2733 | . . . . . . . . 9 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
| 19 | 18 | lsmub1 19571 | . . . . . . . 8 ⊢ (((𝑁‘{𝑌}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊)) → (𝑁‘{𝑌}) ⊆ ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍}))) |
| 20 | 13, 17, 19 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑌}) ⊆ ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍}))) |
| 21 | 9, 10, 18, 4, 8, 14 | lsmpr 21025 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑌, 𝑍}) = ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍}))) |
| 22 | 20, 21 | sseqtrrd 3968 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑌}) ⊆ (𝑁‘{𝑌, 𝑍})) |
| 23 | sseq1 3956 | . . . . . 6 ⊢ ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → ((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑌}) ⊆ (𝑁‘{𝑌, 𝑍}))) | |
| 24 | 22, 23 | syl5ibrcom 247 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍}))) |
| 25 | 9, 5, 10, 4, 8, 14 | lspprcl 20913 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑌, 𝑍}) ∈ (LSubSp‘𝑊)) |
| 26 | lspindpi.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 27 | 9, 5, 10, 4, 25, 26 | ellspsn5b 20930 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍}))) |
| 28 | 24, 27 | sylibrd 259 | . . . 4 ⊢ (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))) |
| 29 | 28 | necon3bd 2943 | . . 3 ⊢ (𝜑 → (¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))) |
| 30 | 1, 29 | mpd 15 | . 2 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| 31 | 18 | lsmub2 19572 | . . . . . . . 8 ⊢ (((𝑁‘{𝑌}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑍}) ∈ (SubGrp‘𝑊)) → (𝑁‘{𝑍}) ⊆ ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍}))) |
| 32 | 13, 17, 31 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑍}) ⊆ ((𝑁‘{𝑌})(LSSum‘𝑊)(𝑁‘{𝑍}))) |
| 33 | 32, 21 | sseqtrrd 3968 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑍}) ⊆ (𝑁‘{𝑌, 𝑍})) |
| 34 | sseq1 3956 | . . . . . 6 ⊢ ((𝑁‘{𝑋}) = (𝑁‘{𝑍}) → ((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑍}) ⊆ (𝑁‘{𝑌, 𝑍}))) | |
| 35 | 33, 34 | syl5ibrcom 247 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑍}) → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍}))) |
| 36 | 35, 27 | sylibrd 259 | . . . 4 ⊢ (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑍}) → 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))) |
| 37 | 36 | necon3bd 2943 | . . 3 ⊢ (𝜑 → (¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))) |
| 38 | 1, 37 | mpd 15 | . 2 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) |
| 39 | 30, 38 | jca 511 | 1 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ⊆ wss 3898 {csn 4575 {cpr 4577 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 SubGrpcsubg 19035 LSSumclsm 19548 LModclmod 20795 LSubSpclss 20866 LSpanclspn 20906 LVecclvec 21038 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-grp 18851 df-minusg 18852 df-sbg 18853 df-subg 19038 df-cntz 19231 df-lsm 19550 df-cmn 19696 df-abl 19697 df-mgp 20061 df-ur 20102 df-ring 20155 df-lmod 20797 df-lss 20867 df-lsp 20907 df-lvec 21039 |
| This theorem is referenced by: lspindp1 21072 baerlem5amN 41835 baerlem5bmN 41836 baerlem5abmN 41837 mapdindp4 41842 mapdh6bN 41856 mapdh6cN 41857 mapdh6dN 41858 mapdh6eN 41859 mapdh6fN 41860 mapdh6hN 41862 mapdh7eN 41867 mapdh7dN 41869 mapdh7fN 41870 mapdh75fN 41874 mapdh8aa 41895 mapdh8ab 41896 mapdh8ad 41898 mapdh8c 41900 mapdh8d0N 41901 mapdh8d 41902 mapdh8e 41903 mapdh9a 41908 mapdh9aOLDN 41909 hdmap1eq4N 41925 hdmap1l6b 41930 hdmap1l6c 41931 hdmap1l6d 41932 hdmap1l6e 41933 hdmap1l6f 41934 hdmap1l6h 41936 hdmap1eulemOLDN 41942 hdmapval0 41952 hdmapval3lemN 41956 hdmap10lem 41958 hdmap11lem1 41960 hdmap14lem11 41997 |
| Copyright terms: Public domain | W3C validator |