![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspsncmp | Structured version Visualization version GIF version |
Description: Comparable spans of nonzero singletons are equal. (Contributed by NM, 27-Apr-2015.) |
Ref | Expression |
---|---|
lspsncmp.v | β’ π = (Baseβπ) |
lspsncmp.o | β’ 0 = (0gβπ) |
lspsncmp.n | β’ π = (LSpanβπ) |
lspsncmp.w | β’ (π β π β LVec) |
lspsncmp.x | β’ (π β π β (π β { 0 })) |
lspsncmp.y | β’ (π β π β π) |
Ref | Expression |
---|---|
lspsncmp | β’ (π β ((πβ{π}) β (πβ{π}) β (πβ{π}) = (πβ{π}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspsncmp.v | . . . 4 β’ π = (Baseβπ) | |
2 | lspsncmp.o | . . . 4 β’ 0 = (0gβπ) | |
3 | lspsncmp.n | . . . 4 β’ π = (LSpanβπ) | |
4 | lspsncmp.w | . . . . 5 β’ (π β π β LVec) | |
5 | 4 | adantr 480 | . . . 4 β’ ((π β§ (πβ{π}) β (πβ{π})) β π β LVec) |
6 | lspsncmp.y | . . . . 5 β’ (π β π β π) | |
7 | 6 | adantr 480 | . . . 4 β’ ((π β§ (πβ{π}) β (πβ{π})) β π β π) |
8 | eqid 2726 | . . . . . 6 β’ (LSubSpβπ) = (LSubSpβπ) | |
9 | lveclmod 20954 | . . . . . . 7 β’ (π β LVec β π β LMod) | |
10 | 4, 9 | syl 17 | . . . . . 6 β’ (π β π β LMod) |
11 | 1, 8, 3 | lspsncl 20824 | . . . . . . 7 β’ ((π β LMod β§ π β π) β (πβ{π}) β (LSubSpβπ)) |
12 | 10, 6, 11 | syl2anc 583 | . . . . . 6 β’ (π β (πβ{π}) β (LSubSpβπ)) |
13 | lspsncmp.x | . . . . . . 7 β’ (π β π β (π β { 0 })) | |
14 | 13 | eldifad 3955 | . . . . . 6 β’ (π β π β π) |
15 | 1, 8, 3, 10, 12, 14 | lspsnel5 20842 | . . . . 5 β’ (π β (π β (πβ{π}) β (πβ{π}) β (πβ{π}))) |
16 | 15 | biimpar 477 | . . . 4 β’ ((π β§ (πβ{π}) β (πβ{π})) β π β (πβ{π})) |
17 | eldifsni 4788 | . . . . . 6 β’ (π β (π β { 0 }) β π β 0 ) | |
18 | 13, 17 | syl 17 | . . . . 5 β’ (π β π β 0 ) |
19 | 18 | adantr 480 | . . . 4 β’ ((π β§ (πβ{π}) β (πβ{π})) β π β 0 ) |
20 | 1, 2, 3, 5, 7, 16, 19 | lspsneleq 20966 | . . 3 β’ ((π β§ (πβ{π}) β (πβ{π})) β (πβ{π}) = (πβ{π})) |
21 | 20 | ex 412 | . 2 β’ (π β ((πβ{π}) β (πβ{π}) β (πβ{π}) = (πβ{π}))) |
22 | eqimss 4035 | . 2 β’ ((πβ{π}) = (πβ{π}) β (πβ{π}) β (πβ{π})) | |
23 | 21, 22 | impbid1 224 | 1 β’ (π β ((πβ{π}) β (πβ{π}) β (πβ{π}) = (πβ{π}))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 β wne 2934 β cdif 3940 β wss 3943 {csn 4623 βcfv 6537 Basecbs 17153 0gc0g 17394 LModclmod 20706 LSubSpclss 20778 LSpanclspn 20818 LVecclvec 20950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-tpos 8212 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-mulr 17220 df-0g 17396 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18866 df-minusg 18867 df-sbg 18868 df-cmn 19702 df-abl 19703 df-mgp 20040 df-rng 20058 df-ur 20087 df-ring 20140 df-oppr 20236 df-dvdsr 20259 df-unit 20260 df-invr 20290 df-drng 20589 df-lmod 20708 df-lss 20779 df-lsp 20819 df-lvec 20951 |
This theorem is referenced by: lspsnne1 20968 lspabs2 20971 lspabs3 20972 lsatfixedN 38392 mapdindp0 41103 hdmaprnlem4N 41237 |
Copyright terms: Public domain | W3C validator |