Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem36 Structured version   Visualization version   GIF version

Theorem lcfrlem36 41181
Description: Lemma for lcfr 41188. (Contributed by NM, 6-Mar-2015.)
Hypotheses
Ref Expression
lcfrlem17.h 𝐻 = (LHyp‘𝐾)
lcfrlem17.o = ((ocH‘𝐾)‘𝑊)
lcfrlem17.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfrlem17.v 𝑉 = (Base‘𝑈)
lcfrlem17.p + = (+g𝑈)
lcfrlem17.z 0 = (0g𝑈)
lcfrlem17.n 𝑁 = (LSpan‘𝑈)
lcfrlem17.a 𝐴 = (LSAtoms‘𝑈)
lcfrlem17.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfrlem17.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
lcfrlem17.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
lcfrlem17.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
lcfrlem22.b 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
lcfrlem24.t · = ( ·𝑠𝑈)
lcfrlem24.s 𝑆 = (Scalar‘𝑈)
lcfrlem24.q 𝑄 = (0g𝑆)
lcfrlem24.r 𝑅 = (Base‘𝑆)
lcfrlem24.j 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
lcfrlem24.ib (𝜑𝐼𝐵)
lcfrlem24.l 𝐿 = (LKer‘𝑈)
lcfrlem25.d 𝐷 = (LDual‘𝑈)
lcfrlem28.jn (𝜑 → ((𝐽𝑌)‘𝐼) ≠ 𝑄)
lcfrlem29.i 𝐹 = (invr𝑆)
lcfrlem30.m = (-g𝐷)
lcfrlem30.c 𝐶 = ((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)))
Assertion
Ref Expression
lcfrlem36 (𝜑 → (𝑋 + 𝑌) ∈ ( ‘(𝐿𝐶)))
Distinct variable groups:   𝑣,𝑘,𝑤,𝑥,   + ,𝑘,𝑣,𝑤,𝑥   𝑅,𝑘,𝑣,𝑥   𝑆,𝑘   · ,𝑘,𝑣,𝑤,𝑥   𝑣,𝑉,𝑥   𝑘,𝑋,𝑣,𝑤,𝑥   𝑘,𝑌,𝑣,𝑤,𝑥   𝑥, 0
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑣,𝑘)   𝐴(𝑥,𝑤,𝑣,𝑘)   𝐵(𝑥,𝑤,𝑣,𝑘)   𝐶(𝑥,𝑤,𝑣,𝑘)   𝐷(𝑥,𝑤,𝑣,𝑘)   𝑄(𝑥,𝑤,𝑣,𝑘)   𝑅(𝑤)   𝑆(𝑥,𝑤,𝑣)   𝑈(𝑥,𝑤,𝑣,𝑘)   𝐹(𝑥,𝑤,𝑣,𝑘)   𝐻(𝑥,𝑤,𝑣,𝑘)   𝐼(𝑥,𝑤,𝑣,𝑘)   𝐽(𝑥,𝑤,𝑣,𝑘)   𝐾(𝑥,𝑤,𝑣,𝑘)   𝐿(𝑥,𝑤,𝑣,𝑘)   (𝑥,𝑤,𝑣,𝑘)   𝑁(𝑥,𝑤,𝑣,𝑘)   𝑉(𝑤,𝑘)   𝑊(𝑥,𝑤,𝑣,𝑘)   0 (𝑤,𝑣,𝑘)

Proof of Theorem lcfrlem36
StepHypRef Expression
1 lcfrlem17.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 lcfrlem17.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 lcfrlem17.o . . . . 5 = ((ocH‘𝐾)‘𝑊)
4 lcfrlem17.v . . . . 5 𝑉 = (Base‘𝑈)
5 lcfrlem17.n . . . . 5 𝑁 = (LSpan‘𝑈)
6 lcfrlem17.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 lcfrlem17.p . . . . . . 7 + = (+g𝑈)
8 lcfrlem17.z . . . . . . 7 0 = (0g𝑈)
9 lcfrlem17.a . . . . . . 7 𝐴 = (LSAtoms‘𝑈)
10 lcfrlem17.x . . . . . . 7 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
11 lcfrlem17.y . . . . . . 7 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
12 lcfrlem17.ne . . . . . . 7 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
131, 3, 2, 4, 7, 8, 5, 9, 6, 10, 11, 12lcfrlem17 41162 . . . . . 6 (𝜑 → (𝑋 + 𝑌) ∈ (𝑉 ∖ { 0 }))
1413eldifad 3956 . . . . 5 (𝜑 → (𝑋 + 𝑌) ∈ 𝑉)
151, 2, 3, 4, 5, 6, 14dochocsn 40984 . . . 4 (𝜑 → ( ‘( ‘{(𝑋 + 𝑌)})) = (𝑁‘{(𝑋 + 𝑌)}))
16 lcfrlem22.b . . . . . 6 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
17 lcfrlem24.t . . . . . 6 · = ( ·𝑠𝑈)
18 lcfrlem24.s . . . . . 6 𝑆 = (Scalar‘𝑈)
19 lcfrlem24.q . . . . . 6 𝑄 = (0g𝑆)
20 lcfrlem24.r . . . . . 6 𝑅 = (Base‘𝑆)
21 lcfrlem24.j . . . . . 6 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
22 lcfrlem24.ib . . . . . 6 (𝜑𝐼𝐵)
23 lcfrlem24.l . . . . . 6 𝐿 = (LKer‘𝑈)
24 lcfrlem25.d . . . . . 6 𝐷 = (LDual‘𝑈)
25 lcfrlem28.jn . . . . . 6 (𝜑 → ((𝐽𝑌)‘𝐼) ≠ 𝑄)
26 lcfrlem29.i . . . . . 6 𝐹 = (invr𝑆)
27 lcfrlem30.m . . . . . 6 = (-g𝐷)
28 lcfrlem30.c . . . . . 6 𝐶 = ((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)))
291, 3, 2, 4, 7, 8, 5, 9, 6, 10, 11, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28lcfrlem35 41180 . . . . 5 (𝜑 → ( ‘{(𝑋 + 𝑌)}) = (𝐿𝐶))
3029fveq2d 6900 . . . 4 (𝜑 → ( ‘( ‘{(𝑋 + 𝑌)})) = ( ‘(𝐿𝐶)))
3115, 30eqtr3d 2767 . . 3 (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) = ( ‘(𝐿𝐶)))
32 eqimss 4035 . . 3 ((𝑁‘{(𝑋 + 𝑌)}) = ( ‘(𝐿𝐶)) → (𝑁‘{(𝑋 + 𝑌)}) ⊆ ( ‘(𝐿𝐶)))
3331, 32syl 17 . 2 (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ⊆ ( ‘(𝐿𝐶)))
34 eqid 2725 . . 3 (LSubSp‘𝑈) = (LSubSp‘𝑈)
351, 2, 6dvhlmod 40713 . . 3 (𝜑𝑈 ∈ LMod)
36 eqid 2725 . . . . 5 (LFnl‘𝑈) = (LFnl‘𝑈)
371, 3, 2, 4, 7, 8, 5, 9, 6, 10, 11, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28lcfrlem30 41175 . . . . 5 (𝜑𝐶 ∈ (LFnl‘𝑈))
384, 36, 23, 35, 37lkrssv 38698 . . . 4 (𝜑 → (𝐿𝐶) ⊆ 𝑉)
391, 2, 4, 34, 3dochlss 40957 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐿𝐶) ⊆ 𝑉) → ( ‘(𝐿𝐶)) ∈ (LSubSp‘𝑈))
406, 38, 39syl2anc 582 . . 3 (𝜑 → ( ‘(𝐿𝐶)) ∈ (LSubSp‘𝑈))
414, 34, 5, 35, 40, 14lspsnel5 20891 . 2 (𝜑 → ((𝑋 + 𝑌) ∈ ( ‘(𝐿𝐶)) ↔ (𝑁‘{(𝑋 + 𝑌)}) ⊆ ( ‘(𝐿𝐶))))
4233, 41mpbird 256 1 (𝜑 → (𝑋 + 𝑌) ∈ ( ‘(𝐿𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wne 2929  wrex 3059  cdif 3941  cin 3943  wss 3944  {csn 4630  {cpr 4632  cmpt 5232  cfv 6549  crio 7374  (class class class)co 7419  Basecbs 17183  +gcplusg 17236  .rcmulr 17237  Scalarcsca 17239   ·𝑠 cvsca 17240  0gc0g 17424  -gcsg 18900  invrcinvr 20338  LSubSpclss 20827  LSpanclspn 20867  LSAtomsclsa 38576  LFnlclfn 38659  LKerclk 38687  LDualcld 38725  HLchlt 38952  LHypclh 39587  DVecHcdvh 40681  ocHcoch 40950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-riotaBAD 38555
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-tpos 8232  df-undef 8279  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-n0 12506  df-z 12592  df-uz 12856  df-fz 13520  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-sca 17252  df-vsca 17253  df-0g 17426  df-mre 17569  df-mrc 17570  df-acs 17572  df-proset 18290  df-poset 18308  df-plt 18325  df-lub 18341  df-glb 18342  df-join 18343  df-meet 18344  df-p0 18420  df-p1 18421  df-lat 18427  df-clat 18494  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-grp 18901  df-minusg 18902  df-sbg 18903  df-subg 19086  df-cntz 19280  df-oppg 19309  df-lsm 19603  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-oppr 20285  df-dvdsr 20308  df-unit 20309  df-invr 20339  df-dvr 20352  df-drng 20638  df-lmod 20757  df-lss 20828  df-lsp 20868  df-lvec 21000  df-lsatoms 38578  df-lshyp 38579  df-lcv 38621  df-lfl 38660  df-lkr 38688  df-ldual 38726  df-oposet 38778  df-ol 38780  df-oml 38781  df-covers 38868  df-ats 38869  df-atl 38900  df-cvlat 38924  df-hlat 38953  df-llines 39101  df-lplanes 39102  df-lvols 39103  df-lines 39104  df-psubsp 39106  df-pmap 39107  df-padd 39399  df-lhyp 39591  df-laut 39592  df-ldil 39707  df-ltrn 39708  df-trl 39762  df-tgrp 40346  df-tendo 40358  df-edring 40360  df-dveca 40606  df-disoa 40632  df-dvech 40682  df-dib 40742  df-dic 40776  df-dih 40832  df-doch 40951  df-djh 40998
This theorem is referenced by:  lcfrlem37  41182
  Copyright terms: Public domain W3C validator