![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem36 | Structured version Visualization version GIF version |
Description: Lemma for lcfr 41188. (Contributed by NM, 6-Mar-2015.) |
Ref | Expression |
---|---|
lcfrlem17.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcfrlem17.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcfrlem17.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcfrlem17.v | ⊢ 𝑉 = (Base‘𝑈) |
lcfrlem17.p | ⊢ + = (+g‘𝑈) |
lcfrlem17.z | ⊢ 0 = (0g‘𝑈) |
lcfrlem17.n | ⊢ 𝑁 = (LSpan‘𝑈) |
lcfrlem17.a | ⊢ 𝐴 = (LSAtoms‘𝑈) |
lcfrlem17.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lcfrlem17.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
lcfrlem17.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
lcfrlem17.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
lcfrlem22.b | ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) |
lcfrlem24.t | ⊢ · = ( ·𝑠 ‘𝑈) |
lcfrlem24.s | ⊢ 𝑆 = (Scalar‘𝑈) |
lcfrlem24.q | ⊢ 𝑄 = (0g‘𝑆) |
lcfrlem24.r | ⊢ 𝑅 = (Base‘𝑆) |
lcfrlem24.j | ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) |
lcfrlem24.ib | ⊢ (𝜑 → 𝐼 ∈ 𝐵) |
lcfrlem24.l | ⊢ 𝐿 = (LKer‘𝑈) |
lcfrlem25.d | ⊢ 𝐷 = (LDual‘𝑈) |
lcfrlem28.jn | ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) |
lcfrlem29.i | ⊢ 𝐹 = (invr‘𝑆) |
lcfrlem30.m | ⊢ − = (-g‘𝐷) |
lcfrlem30.c | ⊢ 𝐶 = ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) |
Ref | Expression |
---|---|
lcfrlem36 | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem17.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | lcfrlem17.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | lcfrlem17.o | . . . . 5 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
4 | lcfrlem17.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
5 | lcfrlem17.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑈) | |
6 | lcfrlem17.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
7 | lcfrlem17.p | . . . . . . 7 ⊢ + = (+g‘𝑈) | |
8 | lcfrlem17.z | . . . . . . 7 ⊢ 0 = (0g‘𝑈) | |
9 | lcfrlem17.a | . . . . . . 7 ⊢ 𝐴 = (LSAtoms‘𝑈) | |
10 | lcfrlem17.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
11 | lcfrlem17.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
12 | lcfrlem17.ne | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
13 | 1, 3, 2, 4, 7, 8, 5, 9, 6, 10, 11, 12 | lcfrlem17 41162 | . . . . . 6 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝑉 ∖ { 0 })) |
14 | 13 | eldifad 3956 | . . . . 5 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝑉) |
15 | 1, 2, 3, 4, 5, 6, 14 | dochocsn 40984 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘{(𝑋 + 𝑌)})) = (𝑁‘{(𝑋 + 𝑌)})) |
16 | lcfrlem22.b | . . . . . 6 ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) | |
17 | lcfrlem24.t | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑈) | |
18 | lcfrlem24.s | . . . . . 6 ⊢ 𝑆 = (Scalar‘𝑈) | |
19 | lcfrlem24.q | . . . . . 6 ⊢ 𝑄 = (0g‘𝑆) | |
20 | lcfrlem24.r | . . . . . 6 ⊢ 𝑅 = (Base‘𝑆) | |
21 | lcfrlem24.j | . . . . . 6 ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) | |
22 | lcfrlem24.ib | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝐵) | |
23 | lcfrlem24.l | . . . . . 6 ⊢ 𝐿 = (LKer‘𝑈) | |
24 | lcfrlem25.d | . . . . . 6 ⊢ 𝐷 = (LDual‘𝑈) | |
25 | lcfrlem28.jn | . . . . . 6 ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) | |
26 | lcfrlem29.i | . . . . . 6 ⊢ 𝐹 = (invr‘𝑆) | |
27 | lcfrlem30.m | . . . . . 6 ⊢ − = (-g‘𝐷) | |
28 | lcfrlem30.c | . . . . . 6 ⊢ 𝐶 = ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) | |
29 | 1, 3, 2, 4, 7, 8, 5, 9, 6, 10, 11, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 | lcfrlem35 41180 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘{(𝑋 + 𝑌)}) = (𝐿‘𝐶)) |
30 | 29 | fveq2d 6900 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘{(𝑋 + 𝑌)})) = ( ⊥ ‘(𝐿‘𝐶))) |
31 | 15, 30 | eqtr3d 2767 | . . 3 ⊢ (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) = ( ⊥ ‘(𝐿‘𝐶))) |
32 | eqimss 4035 | . . 3 ⊢ ((𝑁‘{(𝑋 + 𝑌)}) = ( ⊥ ‘(𝐿‘𝐶)) → (𝑁‘{(𝑋 + 𝑌)}) ⊆ ( ⊥ ‘(𝐿‘𝐶))) | |
33 | 31, 32 | syl 17 | . 2 ⊢ (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ⊆ ( ⊥ ‘(𝐿‘𝐶))) |
34 | eqid 2725 | . . 3 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
35 | 1, 2, 6 | dvhlmod 40713 | . . 3 ⊢ (𝜑 → 𝑈 ∈ LMod) |
36 | eqid 2725 | . . . . 5 ⊢ (LFnl‘𝑈) = (LFnl‘𝑈) | |
37 | 1, 3, 2, 4, 7, 8, 5, 9, 6, 10, 11, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 | lcfrlem30 41175 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ (LFnl‘𝑈)) |
38 | 4, 36, 23, 35, 37 | lkrssv 38698 | . . . 4 ⊢ (𝜑 → (𝐿‘𝐶) ⊆ 𝑉) |
39 | 1, 2, 4, 34, 3 | dochlss 40957 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐿‘𝐶) ⊆ 𝑉) → ( ⊥ ‘(𝐿‘𝐶)) ∈ (LSubSp‘𝑈)) |
40 | 6, 38, 39 | syl2anc 582 | . . 3 ⊢ (𝜑 → ( ⊥ ‘(𝐿‘𝐶)) ∈ (LSubSp‘𝑈)) |
41 | 4, 34, 5, 35, 40, 14 | lspsnel5 20891 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝐶)) ↔ (𝑁‘{(𝑋 + 𝑌)}) ⊆ ( ⊥ ‘(𝐿‘𝐶)))) |
42 | 33, 41 | mpbird 256 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 ∃wrex 3059 ∖ cdif 3941 ∩ cin 3943 ⊆ wss 3944 {csn 4630 {cpr 4632 ↦ cmpt 5232 ‘cfv 6549 ℩crio 7374 (class class class)co 7419 Basecbs 17183 +gcplusg 17236 .rcmulr 17237 Scalarcsca 17239 ·𝑠 cvsca 17240 0gc0g 17424 -gcsg 18900 invrcinvr 20338 LSubSpclss 20827 LSpanclspn 20867 LSAtomsclsa 38576 LFnlclfn 38659 LKerclk 38687 LDualcld 38725 HLchlt 38952 LHypclh 39587 DVecHcdvh 40681 ocHcoch 40950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-riotaBAD 38555 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-of 7685 df-om 7872 df-1st 7994 df-2nd 7995 df-tpos 8232 df-undef 8279 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-n0 12506 df-z 12592 df-uz 12856 df-fz 13520 df-struct 17119 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-plusg 17249 df-mulr 17250 df-sca 17252 df-vsca 17253 df-0g 17426 df-mre 17569 df-mrc 17570 df-acs 17572 df-proset 18290 df-poset 18308 df-plt 18325 df-lub 18341 df-glb 18342 df-join 18343 df-meet 18344 df-p0 18420 df-p1 18421 df-lat 18427 df-clat 18494 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-submnd 18744 df-grp 18901 df-minusg 18902 df-sbg 18903 df-subg 19086 df-cntz 19280 df-oppg 19309 df-lsm 19603 df-cmn 19749 df-abl 19750 df-mgp 20087 df-rng 20105 df-ur 20134 df-ring 20187 df-oppr 20285 df-dvdsr 20308 df-unit 20309 df-invr 20339 df-dvr 20352 df-drng 20638 df-lmod 20757 df-lss 20828 df-lsp 20868 df-lvec 21000 df-lsatoms 38578 df-lshyp 38579 df-lcv 38621 df-lfl 38660 df-lkr 38688 df-ldual 38726 df-oposet 38778 df-ol 38780 df-oml 38781 df-covers 38868 df-ats 38869 df-atl 38900 df-cvlat 38924 df-hlat 38953 df-llines 39101 df-lplanes 39102 df-lvols 39103 df-lines 39104 df-psubsp 39106 df-pmap 39107 df-padd 39399 df-lhyp 39591 df-laut 39592 df-ldil 39707 df-ltrn 39708 df-trl 39762 df-tgrp 40346 df-tendo 40358 df-edring 40360 df-dveca 40606 df-disoa 40632 df-dvech 40682 df-dib 40742 df-dic 40776 df-dih 40832 df-doch 40951 df-djh 40998 |
This theorem is referenced by: lcfrlem37 41182 |
Copyright terms: Public domain | W3C validator |