Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem36 Structured version   Visualization version   GIF version

Theorem lcfrlem36 38874
Description: Lemma for lcfr 38881. (Contributed by NM, 6-Mar-2015.)
Hypotheses
Ref Expression
lcfrlem17.h 𝐻 = (LHyp‘𝐾)
lcfrlem17.o = ((ocH‘𝐾)‘𝑊)
lcfrlem17.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfrlem17.v 𝑉 = (Base‘𝑈)
lcfrlem17.p + = (+g𝑈)
lcfrlem17.z 0 = (0g𝑈)
lcfrlem17.n 𝑁 = (LSpan‘𝑈)
lcfrlem17.a 𝐴 = (LSAtoms‘𝑈)
lcfrlem17.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfrlem17.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
lcfrlem17.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
lcfrlem17.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
lcfrlem22.b 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
lcfrlem24.t · = ( ·𝑠𝑈)
lcfrlem24.s 𝑆 = (Scalar‘𝑈)
lcfrlem24.q 𝑄 = (0g𝑆)
lcfrlem24.r 𝑅 = (Base‘𝑆)
lcfrlem24.j 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
lcfrlem24.ib (𝜑𝐼𝐵)
lcfrlem24.l 𝐿 = (LKer‘𝑈)
lcfrlem25.d 𝐷 = (LDual‘𝑈)
lcfrlem28.jn (𝜑 → ((𝐽𝑌)‘𝐼) ≠ 𝑄)
lcfrlem29.i 𝐹 = (invr𝑆)
lcfrlem30.m = (-g𝐷)
lcfrlem30.c 𝐶 = ((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)))
Assertion
Ref Expression
lcfrlem36 (𝜑 → (𝑋 + 𝑌) ∈ ( ‘(𝐿𝐶)))
Distinct variable groups:   𝑣,𝑘,𝑤,𝑥,   + ,𝑘,𝑣,𝑤,𝑥   𝑅,𝑘,𝑣,𝑥   𝑆,𝑘   · ,𝑘,𝑣,𝑤,𝑥   𝑣,𝑉,𝑥   𝑘,𝑋,𝑣,𝑤,𝑥   𝑘,𝑌,𝑣,𝑤,𝑥   𝑥, 0
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑣,𝑘)   𝐴(𝑥,𝑤,𝑣,𝑘)   𝐵(𝑥,𝑤,𝑣,𝑘)   𝐶(𝑥,𝑤,𝑣,𝑘)   𝐷(𝑥,𝑤,𝑣,𝑘)   𝑄(𝑥,𝑤,𝑣,𝑘)   𝑅(𝑤)   𝑆(𝑥,𝑤,𝑣)   𝑈(𝑥,𝑤,𝑣,𝑘)   𝐹(𝑥,𝑤,𝑣,𝑘)   𝐻(𝑥,𝑤,𝑣,𝑘)   𝐼(𝑥,𝑤,𝑣,𝑘)   𝐽(𝑥,𝑤,𝑣,𝑘)   𝐾(𝑥,𝑤,𝑣,𝑘)   𝐿(𝑥,𝑤,𝑣,𝑘)   (𝑥,𝑤,𝑣,𝑘)   𝑁(𝑥,𝑤,𝑣,𝑘)   𝑉(𝑤,𝑘)   𝑊(𝑥,𝑤,𝑣,𝑘)   0 (𝑤,𝑣,𝑘)

Proof of Theorem lcfrlem36
StepHypRef Expression
1 lcfrlem17.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 lcfrlem17.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 lcfrlem17.o . . . . 5 = ((ocH‘𝐾)‘𝑊)
4 lcfrlem17.v . . . . 5 𝑉 = (Base‘𝑈)
5 lcfrlem17.n . . . . 5 𝑁 = (LSpan‘𝑈)
6 lcfrlem17.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 lcfrlem17.p . . . . . . 7 + = (+g𝑈)
8 lcfrlem17.z . . . . . . 7 0 = (0g𝑈)
9 lcfrlem17.a . . . . . . 7 𝐴 = (LSAtoms‘𝑈)
10 lcfrlem17.x . . . . . . 7 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
11 lcfrlem17.y . . . . . . 7 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
12 lcfrlem17.ne . . . . . . 7 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
131, 3, 2, 4, 7, 8, 5, 9, 6, 10, 11, 12lcfrlem17 38855 . . . . . 6 (𝜑 → (𝑋 + 𝑌) ∈ (𝑉 ∖ { 0 }))
1413eldifad 3893 . . . . 5 (𝜑 → (𝑋 + 𝑌) ∈ 𝑉)
151, 2, 3, 4, 5, 6, 14dochocsn 38677 . . . 4 (𝜑 → ( ‘( ‘{(𝑋 + 𝑌)})) = (𝑁‘{(𝑋 + 𝑌)}))
16 lcfrlem22.b . . . . . 6 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
17 lcfrlem24.t . . . . . 6 · = ( ·𝑠𝑈)
18 lcfrlem24.s . . . . . 6 𝑆 = (Scalar‘𝑈)
19 lcfrlem24.q . . . . . 6 𝑄 = (0g𝑆)
20 lcfrlem24.r . . . . . 6 𝑅 = (Base‘𝑆)
21 lcfrlem24.j . . . . . 6 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
22 lcfrlem24.ib . . . . . 6 (𝜑𝐼𝐵)
23 lcfrlem24.l . . . . . 6 𝐿 = (LKer‘𝑈)
24 lcfrlem25.d . . . . . 6 𝐷 = (LDual‘𝑈)
25 lcfrlem28.jn . . . . . 6 (𝜑 → ((𝐽𝑌)‘𝐼) ≠ 𝑄)
26 lcfrlem29.i . . . . . 6 𝐹 = (invr𝑆)
27 lcfrlem30.m . . . . . 6 = (-g𝐷)
28 lcfrlem30.c . . . . . 6 𝐶 = ((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)))
291, 3, 2, 4, 7, 8, 5, 9, 6, 10, 11, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28lcfrlem35 38873 . . . . 5 (𝜑 → ( ‘{(𝑋 + 𝑌)}) = (𝐿𝐶))
3029fveq2d 6649 . . . 4 (𝜑 → ( ‘( ‘{(𝑋 + 𝑌)})) = ( ‘(𝐿𝐶)))
3115, 30eqtr3d 2835 . . 3 (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) = ( ‘(𝐿𝐶)))
32 eqimss 3971 . . 3 ((𝑁‘{(𝑋 + 𝑌)}) = ( ‘(𝐿𝐶)) → (𝑁‘{(𝑋 + 𝑌)}) ⊆ ( ‘(𝐿𝐶)))
3331, 32syl 17 . 2 (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ⊆ ( ‘(𝐿𝐶)))
34 eqid 2798 . . 3 (LSubSp‘𝑈) = (LSubSp‘𝑈)
351, 2, 6dvhlmod 38406 . . 3 (𝜑𝑈 ∈ LMod)
36 eqid 2798 . . . . 5 (LFnl‘𝑈) = (LFnl‘𝑈)
371, 3, 2, 4, 7, 8, 5, 9, 6, 10, 11, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28lcfrlem30 38868 . . . . 5 (𝜑𝐶 ∈ (LFnl‘𝑈))
384, 36, 23, 35, 37lkrssv 36392 . . . 4 (𝜑 → (𝐿𝐶) ⊆ 𝑉)
391, 2, 4, 34, 3dochlss 38650 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐿𝐶) ⊆ 𝑉) → ( ‘(𝐿𝐶)) ∈ (LSubSp‘𝑈))
406, 38, 39syl2anc 587 . . 3 (𝜑 → ( ‘(𝐿𝐶)) ∈ (LSubSp‘𝑈))
414, 34, 5, 35, 40, 14lspsnel5 19760 . 2 (𝜑 → ((𝑋 + 𝑌) ∈ ( ‘(𝐿𝐶)) ↔ (𝑁‘{(𝑋 + 𝑌)}) ⊆ ( ‘(𝐿𝐶))))
4233, 41mpbird 260 1 (𝜑 → (𝑋 + 𝑌) ∈ ( ‘(𝐿𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2987  wrex 3107  cdif 3878  cin 3880  wss 3881  {csn 4525  {cpr 4527  cmpt 5110  cfv 6324  crio 7092  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  .rcmulr 16558  Scalarcsca 16560   ·𝑠 cvsca 16561  0gc0g 16705  -gcsg 18097  invrcinvr 19417  LSubSpclss 19696  LSpanclspn 19736  LSAtomsclsa 36270  LFnlclfn 36353  LKerclk 36381  LDualcld 36419  HLchlt 36646  LHypclh 37280  DVecHcdvh 38374  ocHcoch 38643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-riotaBAD 36249
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-undef 7922  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-0g 16707  df-mre 16849  df-mrc 16850  df-acs 16852  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-cntz 18439  df-oppg 18466  df-lsm 18753  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-drng 19497  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lvec 19868  df-lsatoms 36272  df-lshyp 36273  df-lcv 36315  df-lfl 36354  df-lkr 36382  df-ldual 36420  df-oposet 36472  df-ol 36474  df-oml 36475  df-covers 36562  df-ats 36563  df-atl 36594  df-cvlat 36618  df-hlat 36647  df-llines 36794  df-lplanes 36795  df-lvols 36796  df-lines 36797  df-psubsp 36799  df-pmap 36800  df-padd 37092  df-lhyp 37284  df-laut 37285  df-ldil 37400  df-ltrn 37401  df-trl 37455  df-tgrp 38039  df-tendo 38051  df-edring 38053  df-dveca 38299  df-disoa 38325  df-dvech 38375  df-dib 38435  df-dic 38469  df-dih 38525  df-doch 38644  df-djh 38691
This theorem is referenced by:  lcfrlem37  38875
  Copyright terms: Public domain W3C validator