Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem36 Structured version   Visualization version   GIF version

Theorem lcfrlem36 41602
Description: Lemma for lcfr 41609. (Contributed by NM, 6-Mar-2015.)
Hypotheses
Ref Expression
lcfrlem17.h 𝐻 = (LHyp‘𝐾)
lcfrlem17.o = ((ocH‘𝐾)‘𝑊)
lcfrlem17.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfrlem17.v 𝑉 = (Base‘𝑈)
lcfrlem17.p + = (+g𝑈)
lcfrlem17.z 0 = (0g𝑈)
lcfrlem17.n 𝑁 = (LSpan‘𝑈)
lcfrlem17.a 𝐴 = (LSAtoms‘𝑈)
lcfrlem17.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfrlem17.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
lcfrlem17.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
lcfrlem17.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
lcfrlem22.b 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
lcfrlem24.t · = ( ·𝑠𝑈)
lcfrlem24.s 𝑆 = (Scalar‘𝑈)
lcfrlem24.q 𝑄 = (0g𝑆)
lcfrlem24.r 𝑅 = (Base‘𝑆)
lcfrlem24.j 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
lcfrlem24.ib (𝜑𝐼𝐵)
lcfrlem24.l 𝐿 = (LKer‘𝑈)
lcfrlem25.d 𝐷 = (LDual‘𝑈)
lcfrlem28.jn (𝜑 → ((𝐽𝑌)‘𝐼) ≠ 𝑄)
lcfrlem29.i 𝐹 = (invr𝑆)
lcfrlem30.m = (-g𝐷)
lcfrlem30.c 𝐶 = ((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)))
Assertion
Ref Expression
lcfrlem36 (𝜑 → (𝑋 + 𝑌) ∈ ( ‘(𝐿𝐶)))
Distinct variable groups:   𝑣,𝑘,𝑤,𝑥,   + ,𝑘,𝑣,𝑤,𝑥   𝑅,𝑘,𝑣,𝑥   𝑆,𝑘   · ,𝑘,𝑣,𝑤,𝑥   𝑣,𝑉,𝑥   𝑘,𝑋,𝑣,𝑤,𝑥   𝑘,𝑌,𝑣,𝑤,𝑥   𝑥, 0
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑣,𝑘)   𝐴(𝑥,𝑤,𝑣,𝑘)   𝐵(𝑥,𝑤,𝑣,𝑘)   𝐶(𝑥,𝑤,𝑣,𝑘)   𝐷(𝑥,𝑤,𝑣,𝑘)   𝑄(𝑥,𝑤,𝑣,𝑘)   𝑅(𝑤)   𝑆(𝑥,𝑤,𝑣)   𝑈(𝑥,𝑤,𝑣,𝑘)   𝐹(𝑥,𝑤,𝑣,𝑘)   𝐻(𝑥,𝑤,𝑣,𝑘)   𝐼(𝑥,𝑤,𝑣,𝑘)   𝐽(𝑥,𝑤,𝑣,𝑘)   𝐾(𝑥,𝑤,𝑣,𝑘)   𝐿(𝑥,𝑤,𝑣,𝑘)   (𝑥,𝑤,𝑣,𝑘)   𝑁(𝑥,𝑤,𝑣,𝑘)   𝑉(𝑤,𝑘)   𝑊(𝑥,𝑤,𝑣,𝑘)   0 (𝑤,𝑣,𝑘)

Proof of Theorem lcfrlem36
StepHypRef Expression
1 lcfrlem17.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 lcfrlem17.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 lcfrlem17.o . . . . 5 = ((ocH‘𝐾)‘𝑊)
4 lcfrlem17.v . . . . 5 𝑉 = (Base‘𝑈)
5 lcfrlem17.n . . . . 5 𝑁 = (LSpan‘𝑈)
6 lcfrlem17.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 lcfrlem17.p . . . . . . 7 + = (+g𝑈)
8 lcfrlem17.z . . . . . . 7 0 = (0g𝑈)
9 lcfrlem17.a . . . . . . 7 𝐴 = (LSAtoms‘𝑈)
10 lcfrlem17.x . . . . . . 7 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
11 lcfrlem17.y . . . . . . 7 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
12 lcfrlem17.ne . . . . . . 7 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
131, 3, 2, 4, 7, 8, 5, 9, 6, 10, 11, 12lcfrlem17 41583 . . . . . 6 (𝜑 → (𝑋 + 𝑌) ∈ (𝑉 ∖ { 0 }))
1413eldifad 3943 . . . . 5 (𝜑 → (𝑋 + 𝑌) ∈ 𝑉)
151, 2, 3, 4, 5, 6, 14dochocsn 41405 . . . 4 (𝜑 → ( ‘( ‘{(𝑋 + 𝑌)})) = (𝑁‘{(𝑋 + 𝑌)}))
16 lcfrlem22.b . . . . . 6 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
17 lcfrlem24.t . . . . . 6 · = ( ·𝑠𝑈)
18 lcfrlem24.s . . . . . 6 𝑆 = (Scalar‘𝑈)
19 lcfrlem24.q . . . . . 6 𝑄 = (0g𝑆)
20 lcfrlem24.r . . . . . 6 𝑅 = (Base‘𝑆)
21 lcfrlem24.j . . . . . 6 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
22 lcfrlem24.ib . . . . . 6 (𝜑𝐼𝐵)
23 lcfrlem24.l . . . . . 6 𝐿 = (LKer‘𝑈)
24 lcfrlem25.d . . . . . 6 𝐷 = (LDual‘𝑈)
25 lcfrlem28.jn . . . . . 6 (𝜑 → ((𝐽𝑌)‘𝐼) ≠ 𝑄)
26 lcfrlem29.i . . . . . 6 𝐹 = (invr𝑆)
27 lcfrlem30.m . . . . . 6 = (-g𝐷)
28 lcfrlem30.c . . . . . 6 𝐶 = ((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)))
291, 3, 2, 4, 7, 8, 5, 9, 6, 10, 11, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28lcfrlem35 41601 . . . . 5 (𝜑 → ( ‘{(𝑋 + 𝑌)}) = (𝐿𝐶))
3029fveq2d 6885 . . . 4 (𝜑 → ( ‘( ‘{(𝑋 + 𝑌)})) = ( ‘(𝐿𝐶)))
3115, 30eqtr3d 2773 . . 3 (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) = ( ‘(𝐿𝐶)))
32 eqimss 4022 . . 3 ((𝑁‘{(𝑋 + 𝑌)}) = ( ‘(𝐿𝐶)) → (𝑁‘{(𝑋 + 𝑌)}) ⊆ ( ‘(𝐿𝐶)))
3331, 32syl 17 . 2 (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ⊆ ( ‘(𝐿𝐶)))
34 eqid 2736 . . 3 (LSubSp‘𝑈) = (LSubSp‘𝑈)
351, 2, 6dvhlmod 41134 . . 3 (𝜑𝑈 ∈ LMod)
36 eqid 2736 . . . . 5 (LFnl‘𝑈) = (LFnl‘𝑈)
371, 3, 2, 4, 7, 8, 5, 9, 6, 10, 11, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28lcfrlem30 41596 . . . . 5 (𝜑𝐶 ∈ (LFnl‘𝑈))
384, 36, 23, 35, 37lkrssv 39119 . . . 4 (𝜑 → (𝐿𝐶) ⊆ 𝑉)
391, 2, 4, 34, 3dochlss 41378 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐿𝐶) ⊆ 𝑉) → ( ‘(𝐿𝐶)) ∈ (LSubSp‘𝑈))
406, 38, 39syl2anc 584 . . 3 (𝜑 → ( ‘(𝐿𝐶)) ∈ (LSubSp‘𝑈))
414, 34, 5, 35, 40, 14ellspsn5b 20957 . 2 (𝜑 → ((𝑋 + 𝑌) ∈ ( ‘(𝐿𝐶)) ↔ (𝑁‘{(𝑋 + 𝑌)}) ⊆ ( ‘(𝐿𝐶))))
4233, 41mpbird 257 1 (𝜑 → (𝑋 + 𝑌) ∈ ( ‘(𝐿𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2933  wrex 3061  cdif 3928  cin 3930  wss 3931  {csn 4606  {cpr 4608  cmpt 5206  cfv 6536  crio 7366  (class class class)co 7410  Basecbs 17233  +gcplusg 17276  .rcmulr 17277  Scalarcsca 17279   ·𝑠 cvsca 17280  0gc0g 17458  -gcsg 18923  invrcinvr 20352  LSubSpclss 20893  LSpanclspn 20933  LSAtomsclsa 38997  LFnlclfn 39080  LKerclk 39108  LDualcld 39146  HLchlt 39373  LHypclh 40008  DVecHcdvh 41102  ocHcoch 41371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-riotaBAD 38976
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-undef 8277  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-0g 17460  df-mre 17603  df-mrc 17604  df-acs 17606  df-proset 18311  df-poset 18330  df-plt 18345  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-p0 18440  df-p1 18441  df-lat 18447  df-clat 18514  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-cntz 19305  df-oppg 19334  df-lsm 19622  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-dvr 20366  df-nzr 20478  df-rlreg 20659  df-domn 20660  df-drng 20696  df-lmod 20824  df-lss 20894  df-lsp 20934  df-lvec 21066  df-lsatoms 38999  df-lshyp 39000  df-lcv 39042  df-lfl 39081  df-lkr 39109  df-ldual 39147  df-oposet 39199  df-ol 39201  df-oml 39202  df-covers 39289  df-ats 39290  df-atl 39321  df-cvlat 39345  df-hlat 39374  df-llines 39522  df-lplanes 39523  df-lvols 39524  df-lines 39525  df-psubsp 39527  df-pmap 39528  df-padd 39820  df-lhyp 40012  df-laut 40013  df-ldil 40128  df-ltrn 40129  df-trl 40183  df-tgrp 40767  df-tendo 40779  df-edring 40781  df-dveca 41027  df-disoa 41053  df-dvech 41103  df-dib 41163  df-dic 41197  df-dih 41253  df-doch 41372  df-djh 41419
This theorem is referenced by:  lcfrlem37  41603
  Copyright terms: Public domain W3C validator