Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem36 | Structured version Visualization version GIF version |
Description: Lemma for lcfr 39599. (Contributed by NM, 6-Mar-2015.) |
Ref | Expression |
---|---|
lcfrlem17.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcfrlem17.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcfrlem17.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcfrlem17.v | ⊢ 𝑉 = (Base‘𝑈) |
lcfrlem17.p | ⊢ + = (+g‘𝑈) |
lcfrlem17.z | ⊢ 0 = (0g‘𝑈) |
lcfrlem17.n | ⊢ 𝑁 = (LSpan‘𝑈) |
lcfrlem17.a | ⊢ 𝐴 = (LSAtoms‘𝑈) |
lcfrlem17.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lcfrlem17.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
lcfrlem17.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
lcfrlem17.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
lcfrlem22.b | ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) |
lcfrlem24.t | ⊢ · = ( ·𝑠 ‘𝑈) |
lcfrlem24.s | ⊢ 𝑆 = (Scalar‘𝑈) |
lcfrlem24.q | ⊢ 𝑄 = (0g‘𝑆) |
lcfrlem24.r | ⊢ 𝑅 = (Base‘𝑆) |
lcfrlem24.j | ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) |
lcfrlem24.ib | ⊢ (𝜑 → 𝐼 ∈ 𝐵) |
lcfrlem24.l | ⊢ 𝐿 = (LKer‘𝑈) |
lcfrlem25.d | ⊢ 𝐷 = (LDual‘𝑈) |
lcfrlem28.jn | ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) |
lcfrlem29.i | ⊢ 𝐹 = (invr‘𝑆) |
lcfrlem30.m | ⊢ − = (-g‘𝐷) |
lcfrlem30.c | ⊢ 𝐶 = ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) |
Ref | Expression |
---|---|
lcfrlem36 | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem17.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | lcfrlem17.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | lcfrlem17.o | . . . . 5 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
4 | lcfrlem17.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
5 | lcfrlem17.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑈) | |
6 | lcfrlem17.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
7 | lcfrlem17.p | . . . . . . 7 ⊢ + = (+g‘𝑈) | |
8 | lcfrlem17.z | . . . . . . 7 ⊢ 0 = (0g‘𝑈) | |
9 | lcfrlem17.a | . . . . . . 7 ⊢ 𝐴 = (LSAtoms‘𝑈) | |
10 | lcfrlem17.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
11 | lcfrlem17.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
12 | lcfrlem17.ne | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
13 | 1, 3, 2, 4, 7, 8, 5, 9, 6, 10, 11, 12 | lcfrlem17 39573 | . . . . . 6 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝑉 ∖ { 0 })) |
14 | 13 | eldifad 3899 | . . . . 5 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝑉) |
15 | 1, 2, 3, 4, 5, 6, 14 | dochocsn 39395 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘{(𝑋 + 𝑌)})) = (𝑁‘{(𝑋 + 𝑌)})) |
16 | lcfrlem22.b | . . . . . 6 ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) | |
17 | lcfrlem24.t | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑈) | |
18 | lcfrlem24.s | . . . . . 6 ⊢ 𝑆 = (Scalar‘𝑈) | |
19 | lcfrlem24.q | . . . . . 6 ⊢ 𝑄 = (0g‘𝑆) | |
20 | lcfrlem24.r | . . . . . 6 ⊢ 𝑅 = (Base‘𝑆) | |
21 | lcfrlem24.j | . . . . . 6 ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) | |
22 | lcfrlem24.ib | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝐵) | |
23 | lcfrlem24.l | . . . . . 6 ⊢ 𝐿 = (LKer‘𝑈) | |
24 | lcfrlem25.d | . . . . . 6 ⊢ 𝐷 = (LDual‘𝑈) | |
25 | lcfrlem28.jn | . . . . . 6 ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) | |
26 | lcfrlem29.i | . . . . . 6 ⊢ 𝐹 = (invr‘𝑆) | |
27 | lcfrlem30.m | . . . . . 6 ⊢ − = (-g‘𝐷) | |
28 | lcfrlem30.c | . . . . . 6 ⊢ 𝐶 = ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) | |
29 | 1, 3, 2, 4, 7, 8, 5, 9, 6, 10, 11, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 | lcfrlem35 39591 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘{(𝑋 + 𝑌)}) = (𝐿‘𝐶)) |
30 | 29 | fveq2d 6778 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘{(𝑋 + 𝑌)})) = ( ⊥ ‘(𝐿‘𝐶))) |
31 | 15, 30 | eqtr3d 2780 | . . 3 ⊢ (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) = ( ⊥ ‘(𝐿‘𝐶))) |
32 | eqimss 3977 | . . 3 ⊢ ((𝑁‘{(𝑋 + 𝑌)}) = ( ⊥ ‘(𝐿‘𝐶)) → (𝑁‘{(𝑋 + 𝑌)}) ⊆ ( ⊥ ‘(𝐿‘𝐶))) | |
33 | 31, 32 | syl 17 | . 2 ⊢ (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ⊆ ( ⊥ ‘(𝐿‘𝐶))) |
34 | eqid 2738 | . . 3 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
35 | 1, 2, 6 | dvhlmod 39124 | . . 3 ⊢ (𝜑 → 𝑈 ∈ LMod) |
36 | eqid 2738 | . . . . 5 ⊢ (LFnl‘𝑈) = (LFnl‘𝑈) | |
37 | 1, 3, 2, 4, 7, 8, 5, 9, 6, 10, 11, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 | lcfrlem30 39586 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ (LFnl‘𝑈)) |
38 | 4, 36, 23, 35, 37 | lkrssv 37110 | . . . 4 ⊢ (𝜑 → (𝐿‘𝐶) ⊆ 𝑉) |
39 | 1, 2, 4, 34, 3 | dochlss 39368 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐿‘𝐶) ⊆ 𝑉) → ( ⊥ ‘(𝐿‘𝐶)) ∈ (LSubSp‘𝑈)) |
40 | 6, 38, 39 | syl2anc 584 | . . 3 ⊢ (𝜑 → ( ⊥ ‘(𝐿‘𝐶)) ∈ (LSubSp‘𝑈)) |
41 | 4, 34, 5, 35, 40, 14 | lspsnel5 20257 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝐶)) ↔ (𝑁‘{(𝑋 + 𝑌)}) ⊆ ( ⊥ ‘(𝐿‘𝐶)))) |
42 | 33, 41 | mpbird 256 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3065 ∖ cdif 3884 ∩ cin 3886 ⊆ wss 3887 {csn 4561 {cpr 4563 ↦ cmpt 5157 ‘cfv 6433 ℩crio 7231 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 .rcmulr 16963 Scalarcsca 16965 ·𝑠 cvsca 16966 0gc0g 17150 -gcsg 18579 invrcinvr 19913 LSubSpclss 20193 LSpanclspn 20233 LSAtomsclsa 36988 LFnlclfn 37071 LKerclk 37099 LDualcld 37137 HLchlt 37364 LHypclh 37998 DVecHcdvh 39092 ocHcoch 39361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-riotaBAD 36967 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-tpos 8042 df-undef 8089 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-0g 17152 df-mre 17295 df-mrc 17296 df-acs 17298 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-p1 18144 df-lat 18150 df-clat 18217 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-subg 18752 df-cntz 18923 df-oppg 18950 df-lsm 19241 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-invr 19914 df-dvr 19925 df-drng 19993 df-lmod 20125 df-lss 20194 df-lsp 20234 df-lvec 20365 df-lsatoms 36990 df-lshyp 36991 df-lcv 37033 df-lfl 37072 df-lkr 37100 df-ldual 37138 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 df-llines 37512 df-lplanes 37513 df-lvols 37514 df-lines 37515 df-psubsp 37517 df-pmap 37518 df-padd 37810 df-lhyp 38002 df-laut 38003 df-ldil 38118 df-ltrn 38119 df-trl 38173 df-tgrp 38757 df-tendo 38769 df-edring 38771 df-dveca 39017 df-disoa 39043 df-dvech 39093 df-dib 39153 df-dic 39187 df-dih 39243 df-doch 39362 df-djh 39409 |
This theorem is referenced by: lcfrlem37 39593 |
Copyright terms: Public domain | W3C validator |