Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem36 | Structured version Visualization version GIF version |
Description: Lemma for lcfr 39578. (Contributed by NM, 6-Mar-2015.) |
Ref | Expression |
---|---|
lcfrlem17.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcfrlem17.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcfrlem17.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcfrlem17.v | ⊢ 𝑉 = (Base‘𝑈) |
lcfrlem17.p | ⊢ + = (+g‘𝑈) |
lcfrlem17.z | ⊢ 0 = (0g‘𝑈) |
lcfrlem17.n | ⊢ 𝑁 = (LSpan‘𝑈) |
lcfrlem17.a | ⊢ 𝐴 = (LSAtoms‘𝑈) |
lcfrlem17.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lcfrlem17.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
lcfrlem17.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
lcfrlem17.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
lcfrlem22.b | ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) |
lcfrlem24.t | ⊢ · = ( ·𝑠 ‘𝑈) |
lcfrlem24.s | ⊢ 𝑆 = (Scalar‘𝑈) |
lcfrlem24.q | ⊢ 𝑄 = (0g‘𝑆) |
lcfrlem24.r | ⊢ 𝑅 = (Base‘𝑆) |
lcfrlem24.j | ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) |
lcfrlem24.ib | ⊢ (𝜑 → 𝐼 ∈ 𝐵) |
lcfrlem24.l | ⊢ 𝐿 = (LKer‘𝑈) |
lcfrlem25.d | ⊢ 𝐷 = (LDual‘𝑈) |
lcfrlem28.jn | ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) |
lcfrlem29.i | ⊢ 𝐹 = (invr‘𝑆) |
lcfrlem30.m | ⊢ − = (-g‘𝐷) |
lcfrlem30.c | ⊢ 𝐶 = ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) |
Ref | Expression |
---|---|
lcfrlem36 | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem17.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | lcfrlem17.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | lcfrlem17.o | . . . . 5 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
4 | lcfrlem17.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
5 | lcfrlem17.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑈) | |
6 | lcfrlem17.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
7 | lcfrlem17.p | . . . . . . 7 ⊢ + = (+g‘𝑈) | |
8 | lcfrlem17.z | . . . . . . 7 ⊢ 0 = (0g‘𝑈) | |
9 | lcfrlem17.a | . . . . . . 7 ⊢ 𝐴 = (LSAtoms‘𝑈) | |
10 | lcfrlem17.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
11 | lcfrlem17.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
12 | lcfrlem17.ne | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
13 | 1, 3, 2, 4, 7, 8, 5, 9, 6, 10, 11, 12 | lcfrlem17 39552 | . . . . . 6 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝑉 ∖ { 0 })) |
14 | 13 | eldifad 3903 | . . . . 5 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝑉) |
15 | 1, 2, 3, 4, 5, 6, 14 | dochocsn 39374 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘{(𝑋 + 𝑌)})) = (𝑁‘{(𝑋 + 𝑌)})) |
16 | lcfrlem22.b | . . . . . 6 ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) | |
17 | lcfrlem24.t | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑈) | |
18 | lcfrlem24.s | . . . . . 6 ⊢ 𝑆 = (Scalar‘𝑈) | |
19 | lcfrlem24.q | . . . . . 6 ⊢ 𝑄 = (0g‘𝑆) | |
20 | lcfrlem24.r | . . . . . 6 ⊢ 𝑅 = (Base‘𝑆) | |
21 | lcfrlem24.j | . . . . . 6 ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) | |
22 | lcfrlem24.ib | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝐵) | |
23 | lcfrlem24.l | . . . . . 6 ⊢ 𝐿 = (LKer‘𝑈) | |
24 | lcfrlem25.d | . . . . . 6 ⊢ 𝐷 = (LDual‘𝑈) | |
25 | lcfrlem28.jn | . . . . . 6 ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) | |
26 | lcfrlem29.i | . . . . . 6 ⊢ 𝐹 = (invr‘𝑆) | |
27 | lcfrlem30.m | . . . . . 6 ⊢ − = (-g‘𝐷) | |
28 | lcfrlem30.c | . . . . . 6 ⊢ 𝐶 = ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) | |
29 | 1, 3, 2, 4, 7, 8, 5, 9, 6, 10, 11, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 | lcfrlem35 39570 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘{(𝑋 + 𝑌)}) = (𝐿‘𝐶)) |
30 | 29 | fveq2d 6772 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘{(𝑋 + 𝑌)})) = ( ⊥ ‘(𝐿‘𝐶))) |
31 | 15, 30 | eqtr3d 2781 | . . 3 ⊢ (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) = ( ⊥ ‘(𝐿‘𝐶))) |
32 | eqimss 3981 | . . 3 ⊢ ((𝑁‘{(𝑋 + 𝑌)}) = ( ⊥ ‘(𝐿‘𝐶)) → (𝑁‘{(𝑋 + 𝑌)}) ⊆ ( ⊥ ‘(𝐿‘𝐶))) | |
33 | 31, 32 | syl 17 | . 2 ⊢ (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ⊆ ( ⊥ ‘(𝐿‘𝐶))) |
34 | eqid 2739 | . . 3 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
35 | 1, 2, 6 | dvhlmod 39103 | . . 3 ⊢ (𝜑 → 𝑈 ∈ LMod) |
36 | eqid 2739 | . . . . 5 ⊢ (LFnl‘𝑈) = (LFnl‘𝑈) | |
37 | 1, 3, 2, 4, 7, 8, 5, 9, 6, 10, 11, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 | lcfrlem30 39565 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ (LFnl‘𝑈)) |
38 | 4, 36, 23, 35, 37 | lkrssv 37089 | . . . 4 ⊢ (𝜑 → (𝐿‘𝐶) ⊆ 𝑉) |
39 | 1, 2, 4, 34, 3 | dochlss 39347 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐿‘𝐶) ⊆ 𝑉) → ( ⊥ ‘(𝐿‘𝐶)) ∈ (LSubSp‘𝑈)) |
40 | 6, 38, 39 | syl2anc 583 | . . 3 ⊢ (𝜑 → ( ⊥ ‘(𝐿‘𝐶)) ∈ (LSubSp‘𝑈)) |
41 | 4, 34, 5, 35, 40, 14 | lspsnel5 20238 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝐶)) ↔ (𝑁‘{(𝑋 + 𝑌)}) ⊆ ( ⊥ ‘(𝐿‘𝐶)))) |
42 | 33, 41 | mpbird 256 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∃wrex 3066 ∖ cdif 3888 ∩ cin 3890 ⊆ wss 3891 {csn 4566 {cpr 4568 ↦ cmpt 5161 ‘cfv 6430 ℩crio 7224 (class class class)co 7268 Basecbs 16893 +gcplusg 16943 .rcmulr 16944 Scalarcsca 16946 ·𝑠 cvsca 16947 0gc0g 17131 -gcsg 18560 invrcinvr 19894 LSubSpclss 20174 LSpanclspn 20214 LSAtomsclsa 36967 LFnlclfn 37050 LKerclk 37078 LDualcld 37116 HLchlt 37343 LHypclh 37977 DVecHcdvh 39071 ocHcoch 39340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-riotaBAD 36946 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-iin 4932 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-of 7524 df-om 7701 df-1st 7817 df-2nd 7818 df-tpos 8026 df-undef 8073 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-map 8591 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-n0 12217 df-z 12303 df-uz 12565 df-fz 13222 df-struct 16829 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-plusg 16956 df-mulr 16957 df-sca 16959 df-vsca 16960 df-0g 17133 df-mre 17276 df-mrc 17277 df-acs 17279 df-proset 17994 df-poset 18012 df-plt 18029 df-lub 18045 df-glb 18046 df-join 18047 df-meet 18048 df-p0 18124 df-p1 18125 df-lat 18131 df-clat 18198 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-submnd 18412 df-grp 18561 df-minusg 18562 df-sbg 18563 df-subg 18733 df-cntz 18904 df-oppg 18931 df-lsm 19222 df-cmn 19369 df-abl 19370 df-mgp 19702 df-ur 19719 df-ring 19766 df-oppr 19843 df-dvdsr 19864 df-unit 19865 df-invr 19895 df-dvr 19906 df-drng 19974 df-lmod 20106 df-lss 20175 df-lsp 20215 df-lvec 20346 df-lsatoms 36969 df-lshyp 36970 df-lcv 37012 df-lfl 37051 df-lkr 37079 df-ldual 37117 df-oposet 37169 df-ol 37171 df-oml 37172 df-covers 37259 df-ats 37260 df-atl 37291 df-cvlat 37315 df-hlat 37344 df-llines 37491 df-lplanes 37492 df-lvols 37493 df-lines 37494 df-psubsp 37496 df-pmap 37497 df-padd 37789 df-lhyp 37981 df-laut 37982 df-ldil 38097 df-ltrn 38098 df-trl 38152 df-tgrp 38736 df-tendo 38748 df-edring 38750 df-dveca 38996 df-disoa 39022 df-dvech 39072 df-dib 39132 df-dic 39166 df-dih 39222 df-doch 39341 df-djh 39388 |
This theorem is referenced by: lcfrlem37 39572 |
Copyright terms: Public domain | W3C validator |