![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem36 | Structured version Visualization version GIF version |
Description: Lemma for lcfr 41568. (Contributed by NM, 6-Mar-2015.) |
Ref | Expression |
---|---|
lcfrlem17.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcfrlem17.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcfrlem17.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcfrlem17.v | ⊢ 𝑉 = (Base‘𝑈) |
lcfrlem17.p | ⊢ + = (+g‘𝑈) |
lcfrlem17.z | ⊢ 0 = (0g‘𝑈) |
lcfrlem17.n | ⊢ 𝑁 = (LSpan‘𝑈) |
lcfrlem17.a | ⊢ 𝐴 = (LSAtoms‘𝑈) |
lcfrlem17.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lcfrlem17.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
lcfrlem17.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
lcfrlem17.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
lcfrlem22.b | ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) |
lcfrlem24.t | ⊢ · = ( ·𝑠 ‘𝑈) |
lcfrlem24.s | ⊢ 𝑆 = (Scalar‘𝑈) |
lcfrlem24.q | ⊢ 𝑄 = (0g‘𝑆) |
lcfrlem24.r | ⊢ 𝑅 = (Base‘𝑆) |
lcfrlem24.j | ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) |
lcfrlem24.ib | ⊢ (𝜑 → 𝐼 ∈ 𝐵) |
lcfrlem24.l | ⊢ 𝐿 = (LKer‘𝑈) |
lcfrlem25.d | ⊢ 𝐷 = (LDual‘𝑈) |
lcfrlem28.jn | ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) |
lcfrlem29.i | ⊢ 𝐹 = (invr‘𝑆) |
lcfrlem30.m | ⊢ − = (-g‘𝐷) |
lcfrlem30.c | ⊢ 𝐶 = ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) |
Ref | Expression |
---|---|
lcfrlem36 | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem17.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | lcfrlem17.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | lcfrlem17.o | . . . . 5 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
4 | lcfrlem17.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
5 | lcfrlem17.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑈) | |
6 | lcfrlem17.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
7 | lcfrlem17.p | . . . . . . 7 ⊢ + = (+g‘𝑈) | |
8 | lcfrlem17.z | . . . . . . 7 ⊢ 0 = (0g‘𝑈) | |
9 | lcfrlem17.a | . . . . . . 7 ⊢ 𝐴 = (LSAtoms‘𝑈) | |
10 | lcfrlem17.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
11 | lcfrlem17.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
12 | lcfrlem17.ne | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
13 | 1, 3, 2, 4, 7, 8, 5, 9, 6, 10, 11, 12 | lcfrlem17 41542 | . . . . . 6 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝑉 ∖ { 0 })) |
14 | 13 | eldifad 3975 | . . . . 5 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝑉) |
15 | 1, 2, 3, 4, 5, 6, 14 | dochocsn 41364 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘{(𝑋 + 𝑌)})) = (𝑁‘{(𝑋 + 𝑌)})) |
16 | lcfrlem22.b | . . . . . 6 ⊢ 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ⊥ ‘{(𝑋 + 𝑌)})) | |
17 | lcfrlem24.t | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑈) | |
18 | lcfrlem24.s | . . . . . 6 ⊢ 𝑆 = (Scalar‘𝑈) | |
19 | lcfrlem24.q | . . . . . 6 ⊢ 𝑄 = (0g‘𝑆) | |
20 | lcfrlem24.r | . . . . . 6 ⊢ 𝑅 = (Base‘𝑆) | |
21 | lcfrlem24.j | . . . . . 6 ⊢ 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝑅 ∃𝑤 ∈ ( ⊥ ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) | |
22 | lcfrlem24.ib | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝐵) | |
23 | lcfrlem24.l | . . . . . 6 ⊢ 𝐿 = (LKer‘𝑈) | |
24 | lcfrlem25.d | . . . . . 6 ⊢ 𝐷 = (LDual‘𝑈) | |
25 | lcfrlem28.jn | . . . . . 6 ⊢ (𝜑 → ((𝐽‘𝑌)‘𝐼) ≠ 𝑄) | |
26 | lcfrlem29.i | . . . . . 6 ⊢ 𝐹 = (invr‘𝑆) | |
27 | lcfrlem30.m | . . . . . 6 ⊢ − = (-g‘𝐷) | |
28 | lcfrlem30.c | . . . . . 6 ⊢ 𝐶 = ((𝐽‘𝑋) − (((𝐹‘((𝐽‘𝑌)‘𝐼))(.r‘𝑆)((𝐽‘𝑋)‘𝐼))( ·𝑠 ‘𝐷)(𝐽‘𝑌))) | |
29 | 1, 3, 2, 4, 7, 8, 5, 9, 6, 10, 11, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 | lcfrlem35 41560 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘{(𝑋 + 𝑌)}) = (𝐿‘𝐶)) |
30 | 29 | fveq2d 6911 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘{(𝑋 + 𝑌)})) = ( ⊥ ‘(𝐿‘𝐶))) |
31 | 15, 30 | eqtr3d 2777 | . . 3 ⊢ (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) = ( ⊥ ‘(𝐿‘𝐶))) |
32 | eqimss 4054 | . . 3 ⊢ ((𝑁‘{(𝑋 + 𝑌)}) = ( ⊥ ‘(𝐿‘𝐶)) → (𝑁‘{(𝑋 + 𝑌)}) ⊆ ( ⊥ ‘(𝐿‘𝐶))) | |
33 | 31, 32 | syl 17 | . 2 ⊢ (𝜑 → (𝑁‘{(𝑋 + 𝑌)}) ⊆ ( ⊥ ‘(𝐿‘𝐶))) |
34 | eqid 2735 | . . 3 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
35 | 1, 2, 6 | dvhlmod 41093 | . . 3 ⊢ (𝜑 → 𝑈 ∈ LMod) |
36 | eqid 2735 | . . . . 5 ⊢ (LFnl‘𝑈) = (LFnl‘𝑈) | |
37 | 1, 3, 2, 4, 7, 8, 5, 9, 6, 10, 11, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 | lcfrlem30 41555 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ (LFnl‘𝑈)) |
38 | 4, 36, 23, 35, 37 | lkrssv 39078 | . . . 4 ⊢ (𝜑 → (𝐿‘𝐶) ⊆ 𝑉) |
39 | 1, 2, 4, 34, 3 | dochlss 41337 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐿‘𝐶) ⊆ 𝑉) → ( ⊥ ‘(𝐿‘𝐶)) ∈ (LSubSp‘𝑈)) |
40 | 6, 38, 39 | syl2anc 584 | . . 3 ⊢ (𝜑 → ( ⊥ ‘(𝐿‘𝐶)) ∈ (LSubSp‘𝑈)) |
41 | 4, 34, 5, 35, 40, 14 | ellspsn5b 21011 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝐶)) ↔ (𝑁‘{(𝑋 + 𝑌)}) ⊆ ( ⊥ ‘(𝐿‘𝐶)))) |
42 | 33, 41 | mpbird 257 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ ( ⊥ ‘(𝐿‘𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∃wrex 3068 ∖ cdif 3960 ∩ cin 3962 ⊆ wss 3963 {csn 4631 {cpr 4633 ↦ cmpt 5231 ‘cfv 6563 ℩crio 7387 (class class class)co 7431 Basecbs 17245 +gcplusg 17298 .rcmulr 17299 Scalarcsca 17301 ·𝑠 cvsca 17302 0gc0g 17486 -gcsg 18966 invrcinvr 20404 LSubSpclss 20947 LSpanclspn 20987 LSAtomsclsa 38956 LFnlclfn 39039 LKerclk 39067 LDualcld 39105 HLchlt 39332 LHypclh 39967 DVecHcdvh 41061 ocHcoch 41330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-riotaBAD 38935 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-tpos 8250 df-undef 8297 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-0g 17488 df-mre 17631 df-mrc 17632 df-acs 17634 df-proset 18352 df-poset 18371 df-plt 18388 df-lub 18404 df-glb 18405 df-join 18406 df-meet 18407 df-p0 18483 df-p1 18484 df-lat 18490 df-clat 18557 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-subg 19154 df-cntz 19348 df-oppg 19377 df-lsm 19669 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-oppr 20351 df-dvdsr 20374 df-unit 20375 df-invr 20405 df-dvr 20418 df-nzr 20530 df-rlreg 20711 df-domn 20712 df-drng 20748 df-lmod 20877 df-lss 20948 df-lsp 20988 df-lvec 21120 df-lsatoms 38958 df-lshyp 38959 df-lcv 39001 df-lfl 39040 df-lkr 39068 df-ldual 39106 df-oposet 39158 df-ol 39160 df-oml 39161 df-covers 39248 df-ats 39249 df-atl 39280 df-cvlat 39304 df-hlat 39333 df-llines 39481 df-lplanes 39482 df-lvols 39483 df-lines 39484 df-psubsp 39486 df-pmap 39487 df-padd 39779 df-lhyp 39971 df-laut 39972 df-ldil 40087 df-ltrn 40088 df-trl 40142 df-tgrp 40726 df-tendo 40738 df-edring 40740 df-dveca 40986 df-disoa 41012 df-dvech 41062 df-dib 41122 df-dic 41156 df-dih 41212 df-doch 41331 df-djh 41378 |
This theorem is referenced by: lcfrlem37 41562 |
Copyright terms: Public domain | W3C validator |