MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eln0s Structured version   Visualization version   GIF version

Theorem eln0s 28280
Description: A non-negative surreal integer is zero or a positive surreal integer. (Contributed by Scott Fenton, 26-May-2025.)
Assertion
Ref Expression
eln0s (𝐴 ∈ ℕ0s ↔ (𝐴 ∈ ℕs𝐴 = 0s ))

Proof of Theorem eln0s
StepHypRef Expression
1 pm2.1 896 . . . 4 𝐴 = 0s𝐴 = 0s )
2 df-ne 2927 . . . . 5 (𝐴 ≠ 0s ↔ ¬ 𝐴 = 0s )
32orbi1i 913 . . . 4 ((𝐴 ≠ 0s𝐴 = 0s ) ↔ (¬ 𝐴 = 0s𝐴 = 0s ))
41, 3mpbir 231 . . 3 (𝐴 ≠ 0s𝐴 = 0s )
5 ordir 1008 . . 3 (((𝐴 ∈ ℕ0s𝐴 ≠ 0s ) ∨ 𝐴 = 0s ) ↔ ((𝐴 ∈ ℕ0s𝐴 = 0s ) ∧ (𝐴 ≠ 0s𝐴 = 0s )))
64, 5mpbiran2 710 . 2 (((𝐴 ∈ ℕ0s𝐴 ≠ 0s ) ∨ 𝐴 = 0s ) ↔ (𝐴 ∈ ℕ0s𝐴 = 0s ))
7 elnns 28261 . . 3 (𝐴 ∈ ℕs ↔ (𝐴 ∈ ℕ0s𝐴 ≠ 0s ))
87orbi1i 913 . 2 ((𝐴 ∈ ℕs𝐴 = 0s ) ↔ ((𝐴 ∈ ℕ0s𝐴 ≠ 0s ) ∨ 𝐴 = 0s ))
9 orc 867 . . 3 (𝐴 ∈ ℕ0s → (𝐴 ∈ ℕ0s𝐴 = 0s ))
10 id 22 . . . 4 (𝐴 ∈ ℕ0s𝐴 ∈ ℕ0s)
11 id 22 . . . . 5 (𝐴 = 0s𝐴 = 0s )
12 0n0s 28251 . . . . 5 0s ∈ ℕ0s
1311, 12eqeltrdi 2837 . . . 4 (𝐴 = 0s𝐴 ∈ ℕ0s)
1410, 13jaoi 857 . . 3 ((𝐴 ∈ ℕ0s𝐴 = 0s ) → 𝐴 ∈ ℕ0s)
159, 14impbii 209 . 2 (𝐴 ∈ ℕ0s ↔ (𝐴 ∈ ℕ0s𝐴 = 0s ))
166, 8, 153bitr4ri 304 1 (𝐴 ∈ ℕ0s ↔ (𝐴 ∈ ℕs𝐴 = 0s ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847   = wceq 1541  wcel 2110  wne 2926   0s c0s 27759  0scnn0s 28235  scnns 28236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-no 27574  df-slt 27575  df-bday 27576  df-sslt 27714  df-scut 27716  df-0s 27761  df-n0s 28237  df-nns 28238
This theorem is referenced by:  nnm1n0s  28293  n0zs  28306  elzs2  28316  elznns  28319  expsp1  28345
  Copyright terms: Public domain W3C validator