| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eln0s | Structured version Visualization version GIF version | ||
| Description: A non-negative surreal integer is zero or a positive surreal integer. (Contributed by Scott Fenton, 26-May-2025.) |
| Ref | Expression |
|---|---|
| eln0s | ⊢ (𝐴 ∈ ℕ0s ↔ (𝐴 ∈ ℕs ∨ 𝐴 = 0s )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.1 896 | . . . 4 ⊢ (¬ 𝐴 = 0s ∨ 𝐴 = 0s ) | |
| 2 | df-ne 2926 | . . . . 5 ⊢ (𝐴 ≠ 0s ↔ ¬ 𝐴 = 0s ) | |
| 3 | 2 | orbi1i 913 | . . . 4 ⊢ ((𝐴 ≠ 0s ∨ 𝐴 = 0s ) ↔ (¬ 𝐴 = 0s ∨ 𝐴 = 0s )) |
| 4 | 1, 3 | mpbir 231 | . . 3 ⊢ (𝐴 ≠ 0s ∨ 𝐴 = 0s ) |
| 5 | ordir 1008 | . . 3 ⊢ (((𝐴 ∈ ℕ0s ∧ 𝐴 ≠ 0s ) ∨ 𝐴 = 0s ) ↔ ((𝐴 ∈ ℕ0s ∨ 𝐴 = 0s ) ∧ (𝐴 ≠ 0s ∨ 𝐴 = 0s ))) | |
| 6 | 4, 5 | mpbiran2 710 | . 2 ⊢ (((𝐴 ∈ ℕ0s ∧ 𝐴 ≠ 0s ) ∨ 𝐴 = 0s ) ↔ (𝐴 ∈ ℕ0s ∨ 𝐴 = 0s )) |
| 7 | elnns 28255 | . . 3 ⊢ (𝐴 ∈ ℕs ↔ (𝐴 ∈ ℕ0s ∧ 𝐴 ≠ 0s )) | |
| 8 | 7 | orbi1i 913 | . 2 ⊢ ((𝐴 ∈ ℕs ∨ 𝐴 = 0s ) ↔ ((𝐴 ∈ ℕ0s ∧ 𝐴 ≠ 0s ) ∨ 𝐴 = 0s )) |
| 9 | orc 867 | . . 3 ⊢ (𝐴 ∈ ℕ0s → (𝐴 ∈ ℕ0s ∨ 𝐴 = 0s )) | |
| 10 | id 22 | . . . 4 ⊢ (𝐴 ∈ ℕ0s → 𝐴 ∈ ℕ0s) | |
| 11 | id 22 | . . . . 5 ⊢ (𝐴 = 0s → 𝐴 = 0s ) | |
| 12 | 0n0s 28245 | . . . . 5 ⊢ 0s ∈ ℕ0s | |
| 13 | 11, 12 | eqeltrdi 2836 | . . . 4 ⊢ (𝐴 = 0s → 𝐴 ∈ ℕ0s) |
| 14 | 10, 13 | jaoi 857 | . . 3 ⊢ ((𝐴 ∈ ℕ0s ∨ 𝐴 = 0s ) → 𝐴 ∈ ℕ0s) |
| 15 | 9, 14 | impbii 209 | . 2 ⊢ (𝐴 ∈ ℕ0s ↔ (𝐴 ∈ ℕ0s ∨ 𝐴 = 0s )) |
| 16 | 6, 8, 15 | 3bitr4ri 304 | 1 ⊢ (𝐴 ∈ ℕ0s ↔ (𝐴 ∈ ℕs ∨ 𝐴 = 0s )) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 0s c0s 27754 ℕ0scnn0s 28229 ℕscnns 28230 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-no 27570 df-slt 27571 df-bday 27572 df-sslt 27710 df-scut 27712 df-0s 27756 df-n0s 28231 df-nns 28232 |
| This theorem is referenced by: nnm1n0s 28287 n0zs 28300 elzs2 28310 elznns 28313 expsp1 28339 |
| Copyright terms: Public domain | W3C validator |