| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eln0s | Structured version Visualization version GIF version | ||
| Description: A non-negative surreal integer is zero or a positive surreal integer. (Contributed by Scott Fenton, 26-May-2025.) |
| Ref | Expression |
|---|---|
| eln0s | ⊢ (𝐴 ∈ ℕ0s ↔ (𝐴 ∈ ℕs ∨ 𝐴 = 0s )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.1 896 | . . . 4 ⊢ (¬ 𝐴 = 0s ∨ 𝐴 = 0s ) | |
| 2 | df-ne 2931 | . . . . 5 ⊢ (𝐴 ≠ 0s ↔ ¬ 𝐴 = 0s ) | |
| 3 | 2 | orbi1i 913 | . . . 4 ⊢ ((𝐴 ≠ 0s ∨ 𝐴 = 0s ) ↔ (¬ 𝐴 = 0s ∨ 𝐴 = 0s )) |
| 4 | 1, 3 | mpbir 231 | . . 3 ⊢ (𝐴 ≠ 0s ∨ 𝐴 = 0s ) |
| 5 | ordir 1008 | . . 3 ⊢ (((𝐴 ∈ ℕ0s ∧ 𝐴 ≠ 0s ) ∨ 𝐴 = 0s ) ↔ ((𝐴 ∈ ℕ0s ∨ 𝐴 = 0s ) ∧ (𝐴 ≠ 0s ∨ 𝐴 = 0s ))) | |
| 6 | 4, 5 | mpbiran2 710 | . 2 ⊢ (((𝐴 ∈ ℕ0s ∧ 𝐴 ≠ 0s ) ∨ 𝐴 = 0s ) ↔ (𝐴 ∈ ℕ0s ∨ 𝐴 = 0s )) |
| 7 | elnns 28278 | . . 3 ⊢ (𝐴 ∈ ℕs ↔ (𝐴 ∈ ℕ0s ∧ 𝐴 ≠ 0s )) | |
| 8 | 7 | orbi1i 913 | . 2 ⊢ ((𝐴 ∈ ℕs ∨ 𝐴 = 0s ) ↔ ((𝐴 ∈ ℕ0s ∧ 𝐴 ≠ 0s ) ∨ 𝐴 = 0s )) |
| 9 | orc 867 | . . 3 ⊢ (𝐴 ∈ ℕ0s → (𝐴 ∈ ℕ0s ∨ 𝐴 = 0s )) | |
| 10 | id 22 | . . . 4 ⊢ (𝐴 ∈ ℕ0s → 𝐴 ∈ ℕ0s) | |
| 11 | id 22 | . . . . 5 ⊢ (𝐴 = 0s → 𝐴 = 0s ) | |
| 12 | 0n0s 28268 | . . . . 5 ⊢ 0s ∈ ℕ0s | |
| 13 | 11, 12 | eqeltrdi 2841 | . . . 4 ⊢ (𝐴 = 0s → 𝐴 ∈ ℕ0s) |
| 14 | 10, 13 | jaoi 857 | . . 3 ⊢ ((𝐴 ∈ ℕ0s ∨ 𝐴 = 0s ) → 𝐴 ∈ ℕ0s) |
| 15 | 9, 14 | impbii 209 | . 2 ⊢ (𝐴 ∈ ℕ0s ↔ (𝐴 ∈ ℕ0s ∨ 𝐴 = 0s )) |
| 16 | 6, 8, 15 | 3bitr4ri 304 | 1 ⊢ (𝐴 ∈ ℕ0s ↔ (𝐴 ∈ ℕs ∨ 𝐴 = 0s )) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2113 ≠ wne 2930 0s c0s 27776 ℕ0scnn0s 28252 ℕscnns 28253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-no 27591 df-slt 27592 df-bday 27593 df-sslt 27731 df-scut 27733 df-0s 27778 df-n0s 28254 df-nns 28255 |
| This theorem is referenced by: nnm1n0s 28310 n0zs 28323 elzs2 28333 elznns 28336 expsp1 28362 |
| Copyright terms: Public domain | W3C validator |