MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eln0s Structured version   Visualization version   GIF version

Theorem eln0s 28273
Description: A non-negative surreal integer is zero or a positive surreal integer. (Contributed by Scott Fenton, 26-May-2025.)
Assertion
Ref Expression
eln0s (𝐴 ∈ ℕ0s ↔ (𝐴 ∈ ℕs𝐴 = 0s ))

Proof of Theorem eln0s
StepHypRef Expression
1 pm2.1 894 . . . 4 𝐴 = 0s𝐴 = 0s )
2 df-ne 2930 . . . . 5 (𝐴 ≠ 0s ↔ ¬ 𝐴 = 0s )
32orbi1i 911 . . . 4 ((𝐴 ≠ 0s𝐴 = 0s ) ↔ (¬ 𝐴 = 0s𝐴 = 0s ))
41, 3mpbir 230 . . 3 (𝐴 ≠ 0s𝐴 = 0s )
5 ordir 1004 . . 3 (((𝐴 ∈ ℕ0s𝐴 ≠ 0s ) ∨ 𝐴 = 0s ) ↔ ((𝐴 ∈ ℕ0s𝐴 = 0s ) ∧ (𝐴 ≠ 0s𝐴 = 0s )))
64, 5mpbiran2 708 . 2 (((𝐴 ∈ ℕ0s𝐴 ≠ 0s ) ∨ 𝐴 = 0s ) ↔ (𝐴 ∈ ℕ0s𝐴 = 0s ))
7 elnns 28260 . . 3 (𝐴 ∈ ℕs ↔ (𝐴 ∈ ℕ0s𝐴 ≠ 0s ))
87orbi1i 911 . 2 ((𝐴 ∈ ℕs𝐴 = 0s ) ↔ ((𝐴 ∈ ℕ0s𝐴 ≠ 0s ) ∨ 𝐴 = 0s ))
9 orc 865 . . 3 (𝐴 ∈ ℕ0s → (𝐴 ∈ ℕ0s𝐴 = 0s ))
10 id 22 . . . 4 (𝐴 ∈ ℕ0s𝐴 ∈ ℕ0s)
11 id 22 . . . . 5 (𝐴 = 0s𝐴 = 0s )
12 0n0s 28251 . . . . 5 0s ∈ ℕ0s
1311, 12eqeltrdi 2833 . . . 4 (𝐴 = 0s𝐴 ∈ ℕ0s)
1410, 13jaoi 855 . . 3 ((𝐴 ∈ ℕ0s𝐴 = 0s ) → 𝐴 ∈ ℕ0s)
159, 14impbii 208 . 2 (𝐴 ∈ ℕ0s ↔ (𝐴 ∈ ℕ0s𝐴 = 0s ))
166, 8, 153bitr4ri 303 1 (𝐴 ∈ ℕ0s ↔ (𝐴 ∈ ℕs𝐴 = 0s ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 394  wo 845   = wceq 1533  wcel 2098  wne 2929   0s c0s 27801  0scnn0s 28235  scnns 28236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-no 27621  df-slt 27622  df-bday 27623  df-sslt 27760  df-scut 27762  df-0s 27803  df-n0s 28237  df-nns 28238
This theorem is referenced by:  n0zs  28287
  Copyright terms: Public domain W3C validator