| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elzs2 | Structured version Visualization version GIF version | ||
| Description: A surreal integer is either a positive integer, zero, or the negative of a positive integer. (Contributed by Scott Fenton, 25-Jul-2025.) |
| Ref | Expression |
|---|---|
| elzs2 | ⊢ (𝑁 ∈ ℤs ↔ (𝑁 ∈ No ∧ (𝑁 ∈ ℕs ∨ 𝑁 = 0s ∨ ( -us ‘𝑁) ∈ ℕs))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elzn0s 28286 | . 2 ⊢ (𝑁 ∈ ℤs ↔ (𝑁 ∈ No ∧ (𝑁 ∈ ℕ0s ∨ ( -us ‘𝑁) ∈ ℕ0s))) | |
| 2 | eln0s 28251 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0s ↔ (𝑁 ∈ ℕs ∨ 𝑁 = 0s )) | |
| 3 | 2 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ No → (𝑁 ∈ ℕ0s ↔ (𝑁 ∈ ℕs ∨ 𝑁 = 0s ))) |
| 4 | eln0s 28251 | . . . . . 6 ⊢ (( -us ‘𝑁) ∈ ℕ0s ↔ (( -us ‘𝑁) ∈ ℕs ∨ ( -us ‘𝑁) = 0s )) | |
| 5 | negs0s 27932 | . . . . . . . . 9 ⊢ ( -us ‘ 0s ) = 0s | |
| 6 | 5 | eqeq2i 2742 | . . . . . . . 8 ⊢ (( -us ‘𝑁) = ( -us ‘ 0s ) ↔ ( -us ‘𝑁) = 0s ) |
| 7 | 0sno 27738 | . . . . . . . . 9 ⊢ 0s ∈ No | |
| 8 | negs11 27955 | . . . . . . . . 9 ⊢ ((𝑁 ∈ No ∧ 0s ∈ No ) → (( -us ‘𝑁) = ( -us ‘ 0s ) ↔ 𝑁 = 0s )) | |
| 9 | 7, 8 | mpan2 691 | . . . . . . . 8 ⊢ (𝑁 ∈ No → (( -us ‘𝑁) = ( -us ‘ 0s ) ↔ 𝑁 = 0s )) |
| 10 | 6, 9 | bitr3id 285 | . . . . . . 7 ⊢ (𝑁 ∈ No → (( -us ‘𝑁) = 0s ↔ 𝑁 = 0s )) |
| 11 | 10 | orbi2d 915 | . . . . . 6 ⊢ (𝑁 ∈ No → ((( -us ‘𝑁) ∈ ℕs ∨ ( -us ‘𝑁) = 0s ) ↔ (( -us ‘𝑁) ∈ ℕs ∨ 𝑁 = 0s ))) |
| 12 | 4, 11 | bitrid 283 | . . . . 5 ⊢ (𝑁 ∈ No → (( -us ‘𝑁) ∈ ℕ0s ↔ (( -us ‘𝑁) ∈ ℕs ∨ 𝑁 = 0s ))) |
| 13 | 3, 12 | orbi12d 918 | . . . 4 ⊢ (𝑁 ∈ No → ((𝑁 ∈ ℕ0s ∨ ( -us ‘𝑁) ∈ ℕ0s) ↔ ((𝑁 ∈ ℕs ∨ 𝑁 = 0s ) ∨ (( -us ‘𝑁) ∈ ℕs ∨ 𝑁 = 0s )))) |
| 14 | 3orcoma 1092 | . . . . 5 ⊢ ((𝑁 ∈ ℕs ∨ 𝑁 = 0s ∨ ( -us ‘𝑁) ∈ ℕs) ↔ (𝑁 = 0s ∨ 𝑁 ∈ ℕs ∨ ( -us ‘𝑁) ∈ ℕs)) | |
| 15 | 3orass 1089 | . . . . 5 ⊢ ((𝑁 = 0s ∨ 𝑁 ∈ ℕs ∨ ( -us ‘𝑁) ∈ ℕs) ↔ (𝑁 = 0s ∨ (𝑁 ∈ ℕs ∨ ( -us ‘𝑁) ∈ ℕs))) | |
| 16 | orcom 870 | . . . . . 6 ⊢ ((𝑁 = 0s ∨ (𝑁 ∈ ℕs ∨ ( -us ‘𝑁) ∈ ℕs)) ↔ ((𝑁 ∈ ℕs ∨ ( -us ‘𝑁) ∈ ℕs) ∨ 𝑁 = 0s )) | |
| 17 | orordir 929 | . . . . . 6 ⊢ (((𝑁 ∈ ℕs ∨ ( -us ‘𝑁) ∈ ℕs) ∨ 𝑁 = 0s ) ↔ ((𝑁 ∈ ℕs ∨ 𝑁 = 0s ) ∨ (( -us ‘𝑁) ∈ ℕs ∨ 𝑁 = 0s ))) | |
| 18 | 16, 17 | bitri 275 | . . . . 5 ⊢ ((𝑁 = 0s ∨ (𝑁 ∈ ℕs ∨ ( -us ‘𝑁) ∈ ℕs)) ↔ ((𝑁 ∈ ℕs ∨ 𝑁 = 0s ) ∨ (( -us ‘𝑁) ∈ ℕs ∨ 𝑁 = 0s ))) |
| 19 | 14, 15, 18 | 3bitrri 298 | . . . 4 ⊢ (((𝑁 ∈ ℕs ∨ 𝑁 = 0s ) ∨ (( -us ‘𝑁) ∈ ℕs ∨ 𝑁 = 0s )) ↔ (𝑁 ∈ ℕs ∨ 𝑁 = 0s ∨ ( -us ‘𝑁) ∈ ℕs)) |
| 20 | 13, 19 | bitr2di 288 | . . 3 ⊢ (𝑁 ∈ No → ((𝑁 ∈ ℕs ∨ 𝑁 = 0s ∨ ( -us ‘𝑁) ∈ ℕs) ↔ (𝑁 ∈ ℕ0s ∨ ( -us ‘𝑁) ∈ ℕ0s))) |
| 21 | 20 | pm5.32i 574 | . 2 ⊢ ((𝑁 ∈ No ∧ (𝑁 ∈ ℕs ∨ 𝑁 = 0s ∨ ( -us ‘𝑁) ∈ ℕs)) ↔ (𝑁 ∈ No ∧ (𝑁 ∈ ℕ0s ∨ ( -us ‘𝑁) ∈ ℕ0s))) |
| 22 | 1, 21 | bitr4i 278 | 1 ⊢ (𝑁 ∈ ℤs ↔ (𝑁 ∈ No ∧ (𝑁 ∈ ℕs ∨ 𝑁 = 0s ∨ ( -us ‘𝑁) ∈ ℕs))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 No csur 27551 0s c0s 27734 -us cnegs 27925 ℕ0scnn0s 28206 ℕscnns 28207 ℤsczs 28266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-ot 4598 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-nadd 8630 df-no 27554 df-slt 27555 df-bday 27556 df-sle 27657 df-sslt 27693 df-scut 27695 df-0s 27736 df-1s 27737 df-made 27755 df-old 27756 df-left 27758 df-right 27759 df-norec 27845 df-norec2 27856 df-adds 27867 df-negs 27927 df-subs 27928 df-n0s 28208 df-nns 28209 df-zs 28267 |
| This theorem is referenced by: elnnzs 28289 elznns 28290 |
| Copyright terms: Public domain | W3C validator |