MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elzs2 Structured version   Visualization version   GIF version

Theorem elzs2 28310
Description: A surreal integer is either a positive integer, zero, or the negative of a positive integer. (Contributed by Scott Fenton, 25-Jul-2025.)
Assertion
Ref Expression
elzs2 (𝑁 ∈ ℤs ↔ (𝑁 No ∧ (𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs)))

Proof of Theorem elzs2
StepHypRef Expression
1 elzn0s 28309 . 2 (𝑁 ∈ ℤs ↔ (𝑁 No ∧ (𝑁 ∈ ℕ0s ∨ ( -us𝑁) ∈ ℕ0s)))
2 eln0s 28274 . . . . . 6 (𝑁 ∈ ℕ0s ↔ (𝑁 ∈ ℕs𝑁 = 0s ))
32a1i 11 . . . . 5 (𝑁 No → (𝑁 ∈ ℕ0s ↔ (𝑁 ∈ ℕs𝑁 = 0s )))
4 eln0s 28274 . . . . . 6 (( -us𝑁) ∈ ℕ0s ↔ (( -us𝑁) ∈ ℕs ∨ ( -us𝑁) = 0s ))
5 negs0s 27955 . . . . . . . . 9 ( -us ‘ 0s ) = 0s
65eqeq2i 2742 . . . . . . . 8 (( -us𝑁) = ( -us ‘ 0s ) ↔ ( -us𝑁) = 0s )
7 0sno 27758 . . . . . . . . 9 0s No
8 negs11 27978 . . . . . . . . 9 ((𝑁 No ∧ 0s No ) → (( -us𝑁) = ( -us ‘ 0s ) ↔ 𝑁 = 0s ))
97, 8mpan2 691 . . . . . . . 8 (𝑁 No → (( -us𝑁) = ( -us ‘ 0s ) ↔ 𝑁 = 0s ))
106, 9bitr3id 285 . . . . . . 7 (𝑁 No → (( -us𝑁) = 0s𝑁 = 0s ))
1110orbi2d 915 . . . . . 6 (𝑁 No → ((( -us𝑁) ∈ ℕs ∨ ( -us𝑁) = 0s ) ↔ (( -us𝑁) ∈ ℕs𝑁 = 0s )))
124, 11bitrid 283 . . . . 5 (𝑁 No → (( -us𝑁) ∈ ℕ0s ↔ (( -us𝑁) ∈ ℕs𝑁 = 0s )))
133, 12orbi12d 918 . . . 4 (𝑁 No → ((𝑁 ∈ ℕ0s ∨ ( -us𝑁) ∈ ℕ0s) ↔ ((𝑁 ∈ ℕs𝑁 = 0s ) ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s ))))
14 3orcoma 1092 . . . . 5 ((𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs) ↔ (𝑁 = 0s𝑁 ∈ ℕs ∨ ( -us𝑁) ∈ ℕs))
15 3orass 1089 . . . . 5 ((𝑁 = 0s𝑁 ∈ ℕs ∨ ( -us𝑁) ∈ ℕs) ↔ (𝑁 = 0s ∨ (𝑁 ∈ ℕs ∨ ( -us𝑁) ∈ ℕs)))
16 orcom 870 . . . . . 6 ((𝑁 = 0s ∨ (𝑁 ∈ ℕs ∨ ( -us𝑁) ∈ ℕs)) ↔ ((𝑁 ∈ ℕs ∨ ( -us𝑁) ∈ ℕs) ∨ 𝑁 = 0s ))
17 orordir 929 . . . . . 6 (((𝑁 ∈ ℕs ∨ ( -us𝑁) ∈ ℕs) ∨ 𝑁 = 0s ) ↔ ((𝑁 ∈ ℕs𝑁 = 0s ) ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s )))
1816, 17bitri 275 . . . . 5 ((𝑁 = 0s ∨ (𝑁 ∈ ℕs ∨ ( -us𝑁) ∈ ℕs)) ↔ ((𝑁 ∈ ℕs𝑁 = 0s ) ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s )))
1914, 15, 183bitrri 298 . . . 4 (((𝑁 ∈ ℕs𝑁 = 0s ) ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s )) ↔ (𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs))
2013, 19bitr2di 288 . . 3 (𝑁 No → ((𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs) ↔ (𝑁 ∈ ℕ0s ∨ ( -us𝑁) ∈ ℕ0s)))
2120pm5.32i 574 . 2 ((𝑁 No ∧ (𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs)) ↔ (𝑁 No ∧ (𝑁 ∈ ℕ0s ∨ ( -us𝑁) ∈ ℕ0s)))
221, 21bitr4i 278 1 (𝑁 ∈ ℤs ↔ (𝑁 No ∧ (𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847  w3o 1085   = wceq 1540  wcel 2109  cfv 6486   No csur 27567   0s c0s 27754   -us cnegs 27948  0scnn0s 28229  scnns 28230  sczs 28289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-nadd 8591  df-no 27570  df-slt 27571  df-bday 27572  df-sle 27673  df-sslt 27710  df-scut 27712  df-0s 27756  df-1s 27757  df-made 27775  df-old 27776  df-left 27778  df-right 27779  df-norec 27868  df-norec2 27879  df-adds 27890  df-negs 27950  df-subs 27951  df-n0s 28231  df-nns 28232  df-zs 28290
This theorem is referenced by:  elnnzs  28312  elznns  28313
  Copyright terms: Public domain W3C validator