| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elzs2 | Structured version Visualization version GIF version | ||
| Description: A surreal integer is either a positive integer, zero, or the negative of a positive integer. (Contributed by Scott Fenton, 25-Jul-2025.) |
| Ref | Expression |
|---|---|
| elzs2 | ⊢ (𝑁 ∈ ℤs ↔ (𝑁 ∈ No ∧ (𝑁 ∈ ℕs ∨ 𝑁 = 0s ∨ ( -us ‘𝑁) ∈ ℕs))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elzn0s 28332 | . 2 ⊢ (𝑁 ∈ ℤs ↔ (𝑁 ∈ No ∧ (𝑁 ∈ ℕ0s ∨ ( -us ‘𝑁) ∈ ℕ0s))) | |
| 2 | eln0s 28297 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0s ↔ (𝑁 ∈ ℕs ∨ 𝑁 = 0s )) | |
| 3 | 2 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ No → (𝑁 ∈ ℕ0s ↔ (𝑁 ∈ ℕs ∨ 𝑁 = 0s ))) |
| 4 | eln0s 28297 | . . . . . 6 ⊢ (( -us ‘𝑁) ∈ ℕ0s ↔ (( -us ‘𝑁) ∈ ℕs ∨ ( -us ‘𝑁) = 0s )) | |
| 5 | negs0s 27978 | . . . . . . . . 9 ⊢ ( -us ‘ 0s ) = 0s | |
| 6 | 5 | eqeq2i 2746 | . . . . . . . 8 ⊢ (( -us ‘𝑁) = ( -us ‘ 0s ) ↔ ( -us ‘𝑁) = 0s ) |
| 7 | 0sno 27780 | . . . . . . . . 9 ⊢ 0s ∈ No | |
| 8 | negs11 28001 | . . . . . . . . 9 ⊢ ((𝑁 ∈ No ∧ 0s ∈ No ) → (( -us ‘𝑁) = ( -us ‘ 0s ) ↔ 𝑁 = 0s )) | |
| 9 | 7, 8 | mpan2 691 | . . . . . . . 8 ⊢ (𝑁 ∈ No → (( -us ‘𝑁) = ( -us ‘ 0s ) ↔ 𝑁 = 0s )) |
| 10 | 6, 9 | bitr3id 285 | . . . . . . 7 ⊢ (𝑁 ∈ No → (( -us ‘𝑁) = 0s ↔ 𝑁 = 0s )) |
| 11 | 10 | orbi2d 915 | . . . . . 6 ⊢ (𝑁 ∈ No → ((( -us ‘𝑁) ∈ ℕs ∨ ( -us ‘𝑁) = 0s ) ↔ (( -us ‘𝑁) ∈ ℕs ∨ 𝑁 = 0s ))) |
| 12 | 4, 11 | bitrid 283 | . . . . 5 ⊢ (𝑁 ∈ No → (( -us ‘𝑁) ∈ ℕ0s ↔ (( -us ‘𝑁) ∈ ℕs ∨ 𝑁 = 0s ))) |
| 13 | 3, 12 | orbi12d 918 | . . . 4 ⊢ (𝑁 ∈ No → ((𝑁 ∈ ℕ0s ∨ ( -us ‘𝑁) ∈ ℕ0s) ↔ ((𝑁 ∈ ℕs ∨ 𝑁 = 0s ) ∨ (( -us ‘𝑁) ∈ ℕs ∨ 𝑁 = 0s )))) |
| 14 | 3orcoma 1092 | . . . . 5 ⊢ ((𝑁 ∈ ℕs ∨ 𝑁 = 0s ∨ ( -us ‘𝑁) ∈ ℕs) ↔ (𝑁 = 0s ∨ 𝑁 ∈ ℕs ∨ ( -us ‘𝑁) ∈ ℕs)) | |
| 15 | 3orass 1089 | . . . . 5 ⊢ ((𝑁 = 0s ∨ 𝑁 ∈ ℕs ∨ ( -us ‘𝑁) ∈ ℕs) ↔ (𝑁 = 0s ∨ (𝑁 ∈ ℕs ∨ ( -us ‘𝑁) ∈ ℕs))) | |
| 16 | orcom 870 | . . . . . 6 ⊢ ((𝑁 = 0s ∨ (𝑁 ∈ ℕs ∨ ( -us ‘𝑁) ∈ ℕs)) ↔ ((𝑁 ∈ ℕs ∨ ( -us ‘𝑁) ∈ ℕs) ∨ 𝑁 = 0s )) | |
| 17 | orordir 929 | . . . . . 6 ⊢ (((𝑁 ∈ ℕs ∨ ( -us ‘𝑁) ∈ ℕs) ∨ 𝑁 = 0s ) ↔ ((𝑁 ∈ ℕs ∨ 𝑁 = 0s ) ∨ (( -us ‘𝑁) ∈ ℕs ∨ 𝑁 = 0s ))) | |
| 18 | 16, 17 | bitri 275 | . . . . 5 ⊢ ((𝑁 = 0s ∨ (𝑁 ∈ ℕs ∨ ( -us ‘𝑁) ∈ ℕs)) ↔ ((𝑁 ∈ ℕs ∨ 𝑁 = 0s ) ∨ (( -us ‘𝑁) ∈ ℕs ∨ 𝑁 = 0s ))) |
| 19 | 14, 15, 18 | 3bitrri 298 | . . . 4 ⊢ (((𝑁 ∈ ℕs ∨ 𝑁 = 0s ) ∨ (( -us ‘𝑁) ∈ ℕs ∨ 𝑁 = 0s )) ↔ (𝑁 ∈ ℕs ∨ 𝑁 = 0s ∨ ( -us ‘𝑁) ∈ ℕs)) |
| 20 | 13, 19 | bitr2di 288 | . . 3 ⊢ (𝑁 ∈ No → ((𝑁 ∈ ℕs ∨ 𝑁 = 0s ∨ ( -us ‘𝑁) ∈ ℕs) ↔ (𝑁 ∈ ℕ0s ∨ ( -us ‘𝑁) ∈ ℕ0s))) |
| 21 | 20 | pm5.32i 574 | . 2 ⊢ ((𝑁 ∈ No ∧ (𝑁 ∈ ℕs ∨ 𝑁 = 0s ∨ ( -us ‘𝑁) ∈ ℕs)) ↔ (𝑁 ∈ No ∧ (𝑁 ∈ ℕ0s ∨ ( -us ‘𝑁) ∈ ℕ0s))) |
| 22 | 1, 21 | bitr4i 278 | 1 ⊢ (𝑁 ∈ ℤs ↔ (𝑁 ∈ No ∧ (𝑁 ∈ ℕs ∨ 𝑁 = 0s ∨ ( -us ‘𝑁) ∈ ℕs))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 = wceq 1541 ∈ wcel 2113 ‘cfv 6489 No csur 27588 0s c0s 27776 -us cnegs 27971 ℕ0scnn0s 28252 ℕscnns 28253 ℤsczs 28312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-nadd 8590 df-no 27591 df-slt 27592 df-bday 27593 df-sle 27694 df-sslt 27731 df-scut 27733 df-0s 27778 df-1s 27779 df-made 27798 df-old 27799 df-left 27801 df-right 27802 df-norec 27891 df-norec2 27902 df-adds 27913 df-negs 27973 df-subs 27974 df-n0s 28254 df-nns 28255 df-zs 28313 |
| This theorem is referenced by: elnnzs 28335 elznns 28336 |
| Copyright terms: Public domain | W3C validator |