![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elzs2 | Structured version Visualization version GIF version |
Description: A surreal integer is either a positive integer, zero, or the negative of a positive integer. (Contributed by Scott Fenton, 25-Jul-2025.) |
Ref | Expression |
---|---|
elzs2 | ⊢ (𝑁 ∈ ℤs ↔ (𝑁 ∈ No ∧ (𝑁 ∈ ℕs ∨ 𝑁 = 0s ∨ ( -us ‘𝑁) ∈ ℕs))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elzn0s 28399 | . 2 ⊢ (𝑁 ∈ ℤs ↔ (𝑁 ∈ No ∧ (𝑁 ∈ ℕ0s ∨ ( -us ‘𝑁) ∈ ℕ0s))) | |
2 | eln0s 28373 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0s ↔ (𝑁 ∈ ℕs ∨ 𝑁 = 0s )) | |
3 | 2 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ No → (𝑁 ∈ ℕ0s ↔ (𝑁 ∈ ℕs ∨ 𝑁 = 0s ))) |
4 | eln0s 28373 | . . . . . 6 ⊢ (( -us ‘𝑁) ∈ ℕ0s ↔ (( -us ‘𝑁) ∈ ℕs ∨ ( -us ‘𝑁) = 0s )) | |
5 | negs0s 28073 | . . . . . . . . 9 ⊢ ( -us ‘ 0s ) = 0s | |
6 | 5 | eqeq2i 2748 | . . . . . . . 8 ⊢ (( -us ‘𝑁) = ( -us ‘ 0s ) ↔ ( -us ‘𝑁) = 0s ) |
7 | 0sno 27886 | . . . . . . . . 9 ⊢ 0s ∈ No | |
8 | negs11 28096 | . . . . . . . . 9 ⊢ ((𝑁 ∈ No ∧ 0s ∈ No ) → (( -us ‘𝑁) = ( -us ‘ 0s ) ↔ 𝑁 = 0s )) | |
9 | 7, 8 | mpan2 691 | . . . . . . . 8 ⊢ (𝑁 ∈ No → (( -us ‘𝑁) = ( -us ‘ 0s ) ↔ 𝑁 = 0s )) |
10 | 6, 9 | bitr3id 285 | . . . . . . 7 ⊢ (𝑁 ∈ No → (( -us ‘𝑁) = 0s ↔ 𝑁 = 0s )) |
11 | 10 | orbi2d 915 | . . . . . 6 ⊢ (𝑁 ∈ No → ((( -us ‘𝑁) ∈ ℕs ∨ ( -us ‘𝑁) = 0s ) ↔ (( -us ‘𝑁) ∈ ℕs ∨ 𝑁 = 0s ))) |
12 | 4, 11 | bitrid 283 | . . . . 5 ⊢ (𝑁 ∈ No → (( -us ‘𝑁) ∈ ℕ0s ↔ (( -us ‘𝑁) ∈ ℕs ∨ 𝑁 = 0s ))) |
13 | 3, 12 | orbi12d 918 | . . . 4 ⊢ (𝑁 ∈ No → ((𝑁 ∈ ℕ0s ∨ ( -us ‘𝑁) ∈ ℕ0s) ↔ ((𝑁 ∈ ℕs ∨ 𝑁 = 0s ) ∨ (( -us ‘𝑁) ∈ ℕs ∨ 𝑁 = 0s )))) |
14 | 3orcoma 1092 | . . . . 5 ⊢ ((𝑁 ∈ ℕs ∨ 𝑁 = 0s ∨ ( -us ‘𝑁) ∈ ℕs) ↔ (𝑁 = 0s ∨ 𝑁 ∈ ℕs ∨ ( -us ‘𝑁) ∈ ℕs)) | |
15 | 3orass 1089 | . . . . 5 ⊢ ((𝑁 = 0s ∨ 𝑁 ∈ ℕs ∨ ( -us ‘𝑁) ∈ ℕs) ↔ (𝑁 = 0s ∨ (𝑁 ∈ ℕs ∨ ( -us ‘𝑁) ∈ ℕs))) | |
16 | orcom 870 | . . . . . 6 ⊢ ((𝑁 = 0s ∨ (𝑁 ∈ ℕs ∨ ( -us ‘𝑁) ∈ ℕs)) ↔ ((𝑁 ∈ ℕs ∨ ( -us ‘𝑁) ∈ ℕs) ∨ 𝑁 = 0s )) | |
17 | orordir 929 | . . . . . 6 ⊢ (((𝑁 ∈ ℕs ∨ ( -us ‘𝑁) ∈ ℕs) ∨ 𝑁 = 0s ) ↔ ((𝑁 ∈ ℕs ∨ 𝑁 = 0s ) ∨ (( -us ‘𝑁) ∈ ℕs ∨ 𝑁 = 0s ))) | |
18 | 16, 17 | bitri 275 | . . . . 5 ⊢ ((𝑁 = 0s ∨ (𝑁 ∈ ℕs ∨ ( -us ‘𝑁) ∈ ℕs)) ↔ ((𝑁 ∈ ℕs ∨ 𝑁 = 0s ) ∨ (( -us ‘𝑁) ∈ ℕs ∨ 𝑁 = 0s ))) |
19 | 14, 15, 18 | 3bitrri 298 | . . . 4 ⊢ (((𝑁 ∈ ℕs ∨ 𝑁 = 0s ) ∨ (( -us ‘𝑁) ∈ ℕs ∨ 𝑁 = 0s )) ↔ (𝑁 ∈ ℕs ∨ 𝑁 = 0s ∨ ( -us ‘𝑁) ∈ ℕs)) |
20 | 13, 19 | bitr2di 288 | . . 3 ⊢ (𝑁 ∈ No → ((𝑁 ∈ ℕs ∨ 𝑁 = 0s ∨ ( -us ‘𝑁) ∈ ℕs) ↔ (𝑁 ∈ ℕ0s ∨ ( -us ‘𝑁) ∈ ℕ0s))) |
21 | 20 | pm5.32i 574 | . 2 ⊢ ((𝑁 ∈ No ∧ (𝑁 ∈ ℕs ∨ 𝑁 = 0s ∨ ( -us ‘𝑁) ∈ ℕs)) ↔ (𝑁 ∈ No ∧ (𝑁 ∈ ℕ0s ∨ ( -us ‘𝑁) ∈ ℕ0s))) |
22 | 1, 21 | bitr4i 278 | 1 ⊢ (𝑁 ∈ ℤs ↔ (𝑁 ∈ No ∧ (𝑁 ∈ ℕs ∨ 𝑁 = 0s ∨ ( -us ‘𝑁) ∈ ℕs))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 No csur 27699 0s c0s 27882 -us cnegs 28066 ℕ0scnn0s 28333 ℕscnns 28334 ℤsczs 28379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-ot 4640 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-nadd 8703 df-no 27702 df-slt 27703 df-bday 27704 df-sle 27805 df-sslt 27841 df-scut 27843 df-0s 27884 df-1s 27885 df-made 27901 df-old 27902 df-left 27904 df-right 27905 df-norec 27986 df-norec2 27997 df-adds 28008 df-negs 28068 df-subs 28069 df-n0s 28335 df-nns 28336 df-zs 28380 |
This theorem is referenced by: elnnzs 28402 elznns 28403 |
Copyright terms: Public domain | W3C validator |