MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elzs2 Structured version   Visualization version   GIF version

Theorem elzs2 28403
Description: A surreal integer is either a positive integer, zero, or the negative of a positive integer. (Contributed by Scott Fenton, 25-Jul-2025.)
Assertion
Ref Expression
elzs2 (𝑁 ∈ ℤs ↔ (𝑁 No ∧ (𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs)))

Proof of Theorem elzs2
StepHypRef Expression
1 elzn0s 28402 . 2 (𝑁 ∈ ℤs ↔ (𝑁 No ∧ (𝑁 ∈ ℕ0s ∨ ( -us𝑁) ∈ ℕ0s)))
2 eln0s 28376 . . . . . 6 (𝑁 ∈ ℕ0s ↔ (𝑁 ∈ ℕs𝑁 = 0s ))
32a1i 11 . . . . 5 (𝑁 No → (𝑁 ∈ ℕ0s ↔ (𝑁 ∈ ℕs𝑁 = 0s )))
4 eln0s 28376 . . . . . 6 (( -us𝑁) ∈ ℕ0s ↔ (( -us𝑁) ∈ ℕs ∨ ( -us𝑁) = 0s ))
5 negs0s 28076 . . . . . . . . 9 ( -us ‘ 0s ) = 0s
65eqeq2i 2753 . . . . . . . 8 (( -us𝑁) = ( -us ‘ 0s ) ↔ ( -us𝑁) = 0s )
7 0sno 27889 . . . . . . . . 9 0s No
8 negs11 28099 . . . . . . . . 9 ((𝑁 No ∧ 0s No ) → (( -us𝑁) = ( -us ‘ 0s ) ↔ 𝑁 = 0s ))
97, 8mpan2 690 . . . . . . . 8 (𝑁 No → (( -us𝑁) = ( -us ‘ 0s ) ↔ 𝑁 = 0s ))
106, 9bitr3id 285 . . . . . . 7 (𝑁 No → (( -us𝑁) = 0s𝑁 = 0s ))
1110orbi2d 914 . . . . . 6 (𝑁 No → ((( -us𝑁) ∈ ℕs ∨ ( -us𝑁) = 0s ) ↔ (( -us𝑁) ∈ ℕs𝑁 = 0s )))
124, 11bitrid 283 . . . . 5 (𝑁 No → (( -us𝑁) ∈ ℕ0s ↔ (( -us𝑁) ∈ ℕs𝑁 = 0s )))
133, 12orbi12d 917 . . . 4 (𝑁 No → ((𝑁 ∈ ℕ0s ∨ ( -us𝑁) ∈ ℕ0s) ↔ ((𝑁 ∈ ℕs𝑁 = 0s ) ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s ))))
14 3orcoma 1093 . . . . 5 ((𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs) ↔ (𝑁 = 0s𝑁 ∈ ℕs ∨ ( -us𝑁) ∈ ℕs))
15 3orass 1090 . . . . 5 ((𝑁 = 0s𝑁 ∈ ℕs ∨ ( -us𝑁) ∈ ℕs) ↔ (𝑁 = 0s ∨ (𝑁 ∈ ℕs ∨ ( -us𝑁) ∈ ℕs)))
16 orcom 869 . . . . . 6 ((𝑁 = 0s ∨ (𝑁 ∈ ℕs ∨ ( -us𝑁) ∈ ℕs)) ↔ ((𝑁 ∈ ℕs ∨ ( -us𝑁) ∈ ℕs) ∨ 𝑁 = 0s ))
17 orordir 928 . . . . . 6 (((𝑁 ∈ ℕs ∨ ( -us𝑁) ∈ ℕs) ∨ 𝑁 = 0s ) ↔ ((𝑁 ∈ ℕs𝑁 = 0s ) ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s )))
1816, 17bitri 275 . . . . 5 ((𝑁 = 0s ∨ (𝑁 ∈ ℕs ∨ ( -us𝑁) ∈ ℕs)) ↔ ((𝑁 ∈ ℕs𝑁 = 0s ) ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s )))
1914, 15, 183bitrri 298 . . . 4 (((𝑁 ∈ ℕs𝑁 = 0s ) ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s )) ↔ (𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs))
2013, 19bitr2di 288 . . 3 (𝑁 No → ((𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs) ↔ (𝑁 ∈ ℕ0s ∨ ( -us𝑁) ∈ ℕ0s)))
2120pm5.32i 574 . 2 ((𝑁 No ∧ (𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs)) ↔ (𝑁 No ∧ (𝑁 ∈ ℕ0s ∨ ( -us𝑁) ∈ ℕ0s)))
221, 21bitr4i 278 1 (𝑁 ∈ ℤs ↔ (𝑁 No ∧ (𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 846  w3o 1086   = wceq 1537  wcel 2108  cfv 6573   No csur 27702   0s c0s 27885   -us cnegs 28069  0scnn0s 28336  scnns 28337  sczs 28382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sle 27808  df-sslt 27844  df-scut 27846  df-0s 27887  df-1s 27888  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec 27989  df-norec2 28000  df-adds 28011  df-negs 28071  df-subs 28072  df-n0s 28338  df-nns 28339  df-zs 28383
This theorem is referenced by:  elnnzs  28405  elznns  28406
  Copyright terms: Public domain W3C validator