|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > elzs2 | Structured version Visualization version GIF version | ||
| Description: A surreal integer is either a positive integer, zero, or the negative of a positive integer. (Contributed by Scott Fenton, 25-Jul-2025.) | 
| Ref | Expression | 
|---|---|
| elzs2 | ⊢ (𝑁 ∈ ℤs ↔ (𝑁 ∈ No ∧ (𝑁 ∈ ℕs ∨ 𝑁 = 0s ∨ ( -us ‘𝑁) ∈ ℕs))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elzn0s 28385 | . 2 ⊢ (𝑁 ∈ ℤs ↔ (𝑁 ∈ No ∧ (𝑁 ∈ ℕ0s ∨ ( -us ‘𝑁) ∈ ℕ0s))) | |
| 2 | eln0s 28359 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0s ↔ (𝑁 ∈ ℕs ∨ 𝑁 = 0s )) | |
| 3 | 2 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ No → (𝑁 ∈ ℕ0s ↔ (𝑁 ∈ ℕs ∨ 𝑁 = 0s ))) | 
| 4 | eln0s 28359 | . . . . . 6 ⊢ (( -us ‘𝑁) ∈ ℕ0s ↔ (( -us ‘𝑁) ∈ ℕs ∨ ( -us ‘𝑁) = 0s )) | |
| 5 | negs0s 28059 | . . . . . . . . 9 ⊢ ( -us ‘ 0s ) = 0s | |
| 6 | 5 | eqeq2i 2749 | . . . . . . . 8 ⊢ (( -us ‘𝑁) = ( -us ‘ 0s ) ↔ ( -us ‘𝑁) = 0s ) | 
| 7 | 0sno 27872 | . . . . . . . . 9 ⊢ 0s ∈ No | |
| 8 | negs11 28082 | . . . . . . . . 9 ⊢ ((𝑁 ∈ No ∧ 0s ∈ No ) → (( -us ‘𝑁) = ( -us ‘ 0s ) ↔ 𝑁 = 0s )) | |
| 9 | 7, 8 | mpan2 691 | . . . . . . . 8 ⊢ (𝑁 ∈ No → (( -us ‘𝑁) = ( -us ‘ 0s ) ↔ 𝑁 = 0s )) | 
| 10 | 6, 9 | bitr3id 285 | . . . . . . 7 ⊢ (𝑁 ∈ No → (( -us ‘𝑁) = 0s ↔ 𝑁 = 0s )) | 
| 11 | 10 | orbi2d 915 | . . . . . 6 ⊢ (𝑁 ∈ No → ((( -us ‘𝑁) ∈ ℕs ∨ ( -us ‘𝑁) = 0s ) ↔ (( -us ‘𝑁) ∈ ℕs ∨ 𝑁 = 0s ))) | 
| 12 | 4, 11 | bitrid 283 | . . . . 5 ⊢ (𝑁 ∈ No → (( -us ‘𝑁) ∈ ℕ0s ↔ (( -us ‘𝑁) ∈ ℕs ∨ 𝑁 = 0s ))) | 
| 13 | 3, 12 | orbi12d 918 | . . . 4 ⊢ (𝑁 ∈ No → ((𝑁 ∈ ℕ0s ∨ ( -us ‘𝑁) ∈ ℕ0s) ↔ ((𝑁 ∈ ℕs ∨ 𝑁 = 0s ) ∨ (( -us ‘𝑁) ∈ ℕs ∨ 𝑁 = 0s )))) | 
| 14 | 3orcoma 1092 | . . . . 5 ⊢ ((𝑁 ∈ ℕs ∨ 𝑁 = 0s ∨ ( -us ‘𝑁) ∈ ℕs) ↔ (𝑁 = 0s ∨ 𝑁 ∈ ℕs ∨ ( -us ‘𝑁) ∈ ℕs)) | |
| 15 | 3orass 1089 | . . . . 5 ⊢ ((𝑁 = 0s ∨ 𝑁 ∈ ℕs ∨ ( -us ‘𝑁) ∈ ℕs) ↔ (𝑁 = 0s ∨ (𝑁 ∈ ℕs ∨ ( -us ‘𝑁) ∈ ℕs))) | |
| 16 | orcom 870 | . . . . . 6 ⊢ ((𝑁 = 0s ∨ (𝑁 ∈ ℕs ∨ ( -us ‘𝑁) ∈ ℕs)) ↔ ((𝑁 ∈ ℕs ∨ ( -us ‘𝑁) ∈ ℕs) ∨ 𝑁 = 0s )) | |
| 17 | orordir 929 | . . . . . 6 ⊢ (((𝑁 ∈ ℕs ∨ ( -us ‘𝑁) ∈ ℕs) ∨ 𝑁 = 0s ) ↔ ((𝑁 ∈ ℕs ∨ 𝑁 = 0s ) ∨ (( -us ‘𝑁) ∈ ℕs ∨ 𝑁 = 0s ))) | |
| 18 | 16, 17 | bitri 275 | . . . . 5 ⊢ ((𝑁 = 0s ∨ (𝑁 ∈ ℕs ∨ ( -us ‘𝑁) ∈ ℕs)) ↔ ((𝑁 ∈ ℕs ∨ 𝑁 = 0s ) ∨ (( -us ‘𝑁) ∈ ℕs ∨ 𝑁 = 0s ))) | 
| 19 | 14, 15, 18 | 3bitrri 298 | . . . 4 ⊢ (((𝑁 ∈ ℕs ∨ 𝑁 = 0s ) ∨ (( -us ‘𝑁) ∈ ℕs ∨ 𝑁 = 0s )) ↔ (𝑁 ∈ ℕs ∨ 𝑁 = 0s ∨ ( -us ‘𝑁) ∈ ℕs)) | 
| 20 | 13, 19 | bitr2di 288 | . . 3 ⊢ (𝑁 ∈ No → ((𝑁 ∈ ℕs ∨ 𝑁 = 0s ∨ ( -us ‘𝑁) ∈ ℕs) ↔ (𝑁 ∈ ℕ0s ∨ ( -us ‘𝑁) ∈ ℕ0s))) | 
| 21 | 20 | pm5.32i 574 | . 2 ⊢ ((𝑁 ∈ No ∧ (𝑁 ∈ ℕs ∨ 𝑁 = 0s ∨ ( -us ‘𝑁) ∈ ℕs)) ↔ (𝑁 ∈ No ∧ (𝑁 ∈ ℕ0s ∨ ( -us ‘𝑁) ∈ ℕ0s))) | 
| 22 | 1, 21 | bitr4i 278 | 1 ⊢ (𝑁 ∈ ℤs ↔ (𝑁 ∈ No ∧ (𝑁 ∈ ℕs ∨ 𝑁 = 0s ∨ ( -us ‘𝑁) ∈ ℕs))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 = wceq 1539 ∈ wcel 2107 ‘cfv 6560 No csur 27685 0s c0s 27868 -us cnegs 28052 ℕ0scnn0s 28319 ℕscnns 28320 ℤsczs 28365 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-ot 4634 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-nadd 8705 df-no 27688 df-slt 27689 df-bday 27690 df-sle 27791 df-sslt 27827 df-scut 27829 df-0s 27870 df-1s 27871 df-made 27887 df-old 27888 df-left 27890 df-right 27891 df-norec 27972 df-norec2 27983 df-adds 27994 df-negs 28054 df-subs 28055 df-n0s 28321 df-nns 28322 df-zs 28366 | 
| This theorem is referenced by: elnnzs 28388 elznns 28389 | 
| Copyright terms: Public domain | W3C validator |