MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elzs2 Structured version   Visualization version   GIF version

Theorem elzs2 28333
Description: A surreal integer is either a positive integer, zero, or the negative of a positive integer. (Contributed by Scott Fenton, 25-Jul-2025.)
Assertion
Ref Expression
elzs2 (𝑁 ∈ ℤs ↔ (𝑁 No ∧ (𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs)))

Proof of Theorem elzs2
StepHypRef Expression
1 elzn0s 28332 . 2 (𝑁 ∈ ℤs ↔ (𝑁 No ∧ (𝑁 ∈ ℕ0s ∨ ( -us𝑁) ∈ ℕ0s)))
2 eln0s 28297 . . . . . 6 (𝑁 ∈ ℕ0s ↔ (𝑁 ∈ ℕs𝑁 = 0s ))
32a1i 11 . . . . 5 (𝑁 No → (𝑁 ∈ ℕ0s ↔ (𝑁 ∈ ℕs𝑁 = 0s )))
4 eln0s 28297 . . . . . 6 (( -us𝑁) ∈ ℕ0s ↔ (( -us𝑁) ∈ ℕs ∨ ( -us𝑁) = 0s ))
5 negs0s 27978 . . . . . . . . 9 ( -us ‘ 0s ) = 0s
65eqeq2i 2746 . . . . . . . 8 (( -us𝑁) = ( -us ‘ 0s ) ↔ ( -us𝑁) = 0s )
7 0sno 27780 . . . . . . . . 9 0s No
8 negs11 28001 . . . . . . . . 9 ((𝑁 No ∧ 0s No ) → (( -us𝑁) = ( -us ‘ 0s ) ↔ 𝑁 = 0s ))
97, 8mpan2 691 . . . . . . . 8 (𝑁 No → (( -us𝑁) = ( -us ‘ 0s ) ↔ 𝑁 = 0s ))
106, 9bitr3id 285 . . . . . . 7 (𝑁 No → (( -us𝑁) = 0s𝑁 = 0s ))
1110orbi2d 915 . . . . . 6 (𝑁 No → ((( -us𝑁) ∈ ℕs ∨ ( -us𝑁) = 0s ) ↔ (( -us𝑁) ∈ ℕs𝑁 = 0s )))
124, 11bitrid 283 . . . . 5 (𝑁 No → (( -us𝑁) ∈ ℕ0s ↔ (( -us𝑁) ∈ ℕs𝑁 = 0s )))
133, 12orbi12d 918 . . . 4 (𝑁 No → ((𝑁 ∈ ℕ0s ∨ ( -us𝑁) ∈ ℕ0s) ↔ ((𝑁 ∈ ℕs𝑁 = 0s ) ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s ))))
14 3orcoma 1092 . . . . 5 ((𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs) ↔ (𝑁 = 0s𝑁 ∈ ℕs ∨ ( -us𝑁) ∈ ℕs))
15 3orass 1089 . . . . 5 ((𝑁 = 0s𝑁 ∈ ℕs ∨ ( -us𝑁) ∈ ℕs) ↔ (𝑁 = 0s ∨ (𝑁 ∈ ℕs ∨ ( -us𝑁) ∈ ℕs)))
16 orcom 870 . . . . . 6 ((𝑁 = 0s ∨ (𝑁 ∈ ℕs ∨ ( -us𝑁) ∈ ℕs)) ↔ ((𝑁 ∈ ℕs ∨ ( -us𝑁) ∈ ℕs) ∨ 𝑁 = 0s ))
17 orordir 929 . . . . . 6 (((𝑁 ∈ ℕs ∨ ( -us𝑁) ∈ ℕs) ∨ 𝑁 = 0s ) ↔ ((𝑁 ∈ ℕs𝑁 = 0s ) ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s )))
1816, 17bitri 275 . . . . 5 ((𝑁 = 0s ∨ (𝑁 ∈ ℕs ∨ ( -us𝑁) ∈ ℕs)) ↔ ((𝑁 ∈ ℕs𝑁 = 0s ) ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s )))
1914, 15, 183bitrri 298 . . . 4 (((𝑁 ∈ ℕs𝑁 = 0s ) ∨ (( -us𝑁) ∈ ℕs𝑁 = 0s )) ↔ (𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs))
2013, 19bitr2di 288 . . 3 (𝑁 No → ((𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs) ↔ (𝑁 ∈ ℕ0s ∨ ( -us𝑁) ∈ ℕ0s)))
2120pm5.32i 574 . 2 ((𝑁 No ∧ (𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs)) ↔ (𝑁 No ∧ (𝑁 ∈ ℕ0s ∨ ( -us𝑁) ∈ ℕ0s)))
221, 21bitr4i 278 1 (𝑁 ∈ ℤs ↔ (𝑁 No ∧ (𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847  w3o 1085   = wceq 1541  wcel 2113  cfv 6489   No csur 27588   0s c0s 27776   -us cnegs 27971  0scnn0s 28252  scnns 28253  sczs 28312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-nadd 8590  df-no 27591  df-slt 27592  df-bday 27593  df-sle 27694  df-sslt 27731  df-scut 27733  df-0s 27778  df-1s 27779  df-made 27798  df-old 27799  df-left 27801  df-right 27802  df-norec 27891  df-norec2 27902  df-adds 27913  df-negs 27973  df-subs 27974  df-n0s 28254  df-nns 28255  df-zs 28313
This theorem is referenced by:  elnnzs  28335  elznns  28336
  Copyright terms: Public domain W3C validator