MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnm1n0s Structured version   Visualization version   GIF version

Theorem nnm1n0s 28305
Description: A positive surreal integer minus one is a non-negative surreal integer. (Contributed by Scott Fenton, 8-Nov-2025.)
Assertion
Ref Expression
nnm1n0s (𝑁 ∈ ℕs → (𝑁 -s 1s ) ∈ ℕ0s)

Proof of Theorem nnm1n0s
StepHypRef Expression
1 nn1m1nns 28304 . . . 4 (𝑁 ∈ ℕs → (𝑁 = 1s ∨ (𝑁 -s 1s ) ∈ ℕs))
2 nnsno 28258 . . . . . 6 (𝑁 ∈ ℕs𝑁 No )
3 1sno 27777 . . . . . . 7 1s No
43a1i 11 . . . . . 6 (𝑁 ∈ ℕs → 1s No )
52, 4subseq0d 28049 . . . . 5 (𝑁 ∈ ℕs → ((𝑁 -s 1s ) = 0s𝑁 = 1s ))
65orbi1d 916 . . . 4 (𝑁 ∈ ℕs → (((𝑁 -s 1s ) = 0s ∨ (𝑁 -s 1s ) ∈ ℕs) ↔ (𝑁 = 1s ∨ (𝑁 -s 1s ) ∈ ℕs)))
71, 6mpbird 257 . . 3 (𝑁 ∈ ℕs → ((𝑁 -s 1s ) = 0s ∨ (𝑁 -s 1s ) ∈ ℕs))
87orcomd 871 . 2 (𝑁 ∈ ℕs → ((𝑁 -s 1s ) ∈ ℕs ∨ (𝑁 -s 1s ) = 0s ))
9 eln0s 28292 . 2 ((𝑁 -s 1s ) ∈ ℕ0s ↔ ((𝑁 -s 1s ) ∈ ℕs ∨ (𝑁 -s 1s ) = 0s ))
108, 9sylibr 234 1 (𝑁 ∈ ℕs → (𝑁 -s 1s ) ∈ ℕ0s)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1540  wcel 2109  (class class class)co 7369   No csur 27585   0s c0s 27772   1s c1s 27773   -s csubs 27967  0scnn0s 28247  scnns 28248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-nadd 8607  df-no 27588  df-slt 27589  df-bday 27590  df-sle 27691  df-sslt 27728  df-scut 27730  df-0s 27774  df-1s 27775  df-made 27793  df-old 27794  df-left 27796  df-right 27797  df-norec 27886  df-norec2 27897  df-adds 27908  df-negs 27968  df-subs 27969  df-n0s 28249  df-nns 28250
This theorem is referenced by:  eucliddivs  28306
  Copyright terms: Public domain W3C validator