![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > n0s0m1 | Structured version Visualization version GIF version |
Description: Every non-negative surreal integer is either zero or a successor. (Contributed by Scott Fenton, 26-May-2025.) |
Ref | Expression |
---|---|
n0s0m1 | ⊢ (𝐴 ∈ ℕ0s → (𝐴 = 0s ∨ (𝐴 -s 1s ) ∈ ℕ0s)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2729 | . . 3 ⊢ (𝑥 = 0s → (𝑥 = 0s ↔ 0s = 0s )) | |
2 | oveq1 7426 | . . . 4 ⊢ (𝑥 = 0s → (𝑥 -s 1s ) = ( 0s -s 1s )) | |
3 | 2 | eleq1d 2810 | . . 3 ⊢ (𝑥 = 0s → ((𝑥 -s 1s ) ∈ ℕ0s ↔ ( 0s -s 1s ) ∈ ℕ0s)) |
4 | 1, 3 | orbi12d 916 | . 2 ⊢ (𝑥 = 0s → ((𝑥 = 0s ∨ (𝑥 -s 1s ) ∈ ℕ0s) ↔ ( 0s = 0s ∨ ( 0s -s 1s ) ∈ ℕ0s))) |
5 | eqeq1 2729 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = 0s ↔ 𝑦 = 0s )) | |
6 | oveq1 7426 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 -s 1s ) = (𝑦 -s 1s )) | |
7 | 6 | eleq1d 2810 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 -s 1s ) ∈ ℕ0s ↔ (𝑦 -s 1s ) ∈ ℕ0s)) |
8 | 5, 7 | orbi12d 916 | . 2 ⊢ (𝑥 = 𝑦 → ((𝑥 = 0s ∨ (𝑥 -s 1s ) ∈ ℕ0s) ↔ (𝑦 = 0s ∨ (𝑦 -s 1s ) ∈ ℕ0s))) |
9 | eqeq1 2729 | . . 3 ⊢ (𝑥 = (𝑦 +s 1s ) → (𝑥 = 0s ↔ (𝑦 +s 1s ) = 0s )) | |
10 | oveq1 7426 | . . . 4 ⊢ (𝑥 = (𝑦 +s 1s ) → (𝑥 -s 1s ) = ((𝑦 +s 1s ) -s 1s )) | |
11 | 10 | eleq1d 2810 | . . 3 ⊢ (𝑥 = (𝑦 +s 1s ) → ((𝑥 -s 1s ) ∈ ℕ0s ↔ ((𝑦 +s 1s ) -s 1s ) ∈ ℕ0s)) |
12 | 9, 11 | orbi12d 916 | . 2 ⊢ (𝑥 = (𝑦 +s 1s ) → ((𝑥 = 0s ∨ (𝑥 -s 1s ) ∈ ℕ0s) ↔ ((𝑦 +s 1s ) = 0s ∨ ((𝑦 +s 1s ) -s 1s ) ∈ ℕ0s))) |
13 | eqeq1 2729 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = 0s ↔ 𝐴 = 0s )) | |
14 | oveq1 7426 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 -s 1s ) = (𝐴 -s 1s )) | |
15 | 14 | eleq1d 2810 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 -s 1s ) ∈ ℕ0s ↔ (𝐴 -s 1s ) ∈ ℕ0s)) |
16 | 13, 15 | orbi12d 916 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 = 0s ∨ (𝑥 -s 1s ) ∈ ℕ0s) ↔ (𝐴 = 0s ∨ (𝐴 -s 1s ) ∈ ℕ0s))) |
17 | eqid 2725 | . . 3 ⊢ 0s = 0s | |
18 | 17 | orci 863 | . 2 ⊢ ( 0s = 0s ∨ ( 0s -s 1s ) ∈ ℕ0s) |
19 | n0sno 28245 | . . . . . 6 ⊢ (𝑦 ∈ ℕ0s → 𝑦 ∈ No ) | |
20 | 1sno 27806 | . . . . . 6 ⊢ 1s ∈ No | |
21 | pncans 28028 | . . . . . 6 ⊢ ((𝑦 ∈ No ∧ 1s ∈ No ) → ((𝑦 +s 1s ) -s 1s ) = 𝑦) | |
22 | 19, 20, 21 | sylancl 584 | . . . . 5 ⊢ (𝑦 ∈ ℕ0s → ((𝑦 +s 1s ) -s 1s ) = 𝑦) |
23 | id 22 | . . . . 5 ⊢ (𝑦 ∈ ℕ0s → 𝑦 ∈ ℕ0s) | |
24 | 22, 23 | eqeltrd 2825 | . . . 4 ⊢ (𝑦 ∈ ℕ0s → ((𝑦 +s 1s ) -s 1s ) ∈ ℕ0s) |
25 | 24 | olcd 872 | . . 3 ⊢ (𝑦 ∈ ℕ0s → ((𝑦 +s 1s ) = 0s ∨ ((𝑦 +s 1s ) -s 1s ) ∈ ℕ0s)) |
26 | 25 | a1d 25 | . 2 ⊢ (𝑦 ∈ ℕ0s → ((𝑦 = 0s ∨ (𝑦 -s 1s ) ∈ ℕ0s) → ((𝑦 +s 1s ) = 0s ∨ ((𝑦 +s 1s ) -s 1s ) ∈ ℕ0s))) |
27 | 4, 8, 12, 16, 18, 26 | n0sind 28254 | 1 ⊢ (𝐴 ∈ ℕ0s → (𝐴 = 0s ∨ (𝐴 -s 1s ) ∈ ℕ0s)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 845 = wceq 1533 ∈ wcel 2098 (class class class)co 7419 No csur 27618 0s c0s 27801 1s c1s 27802 +s cadds 27922 -s csubs 27979 ℕ0scnn0s 28235 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-ot 4639 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-nadd 8687 df-no 27621 df-slt 27622 df-bday 27623 df-sle 27724 df-sslt 27760 df-scut 27762 df-0s 27803 df-1s 27804 df-made 27820 df-old 27821 df-left 27823 df-right 27824 df-norec 27901 df-norec2 27912 df-adds 27923 df-negs 27980 df-subs 27981 df-n0s 28237 |
This theorem is referenced by: n0subs 28275 |
Copyright terms: Public domain | W3C validator |