![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > n0s0m1 | Structured version Visualization version GIF version |
Description: Every non-negative surreal integer is either zero or a successor. (Contributed by Scott Fenton, 26-May-2025.) |
Ref | Expression |
---|---|
n0s0m1 | ⊢ (𝐴 ∈ ℕ0s → (𝐴 = 0s ∨ (𝐴 -s 1s ) ∈ ℕ0s)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2744 | . . 3 ⊢ (𝑥 = 0s → (𝑥 = 0s ↔ 0s = 0s )) | |
2 | oveq1 7455 | . . . 4 ⊢ (𝑥 = 0s → (𝑥 -s 1s ) = ( 0s -s 1s )) | |
3 | 2 | eleq1d 2829 | . . 3 ⊢ (𝑥 = 0s → ((𝑥 -s 1s ) ∈ ℕ0s ↔ ( 0s -s 1s ) ∈ ℕ0s)) |
4 | 1, 3 | orbi12d 917 | . 2 ⊢ (𝑥 = 0s → ((𝑥 = 0s ∨ (𝑥 -s 1s ) ∈ ℕ0s) ↔ ( 0s = 0s ∨ ( 0s -s 1s ) ∈ ℕ0s))) |
5 | eqeq1 2744 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = 0s ↔ 𝑦 = 0s )) | |
6 | oveq1 7455 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 -s 1s ) = (𝑦 -s 1s )) | |
7 | 6 | eleq1d 2829 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 -s 1s ) ∈ ℕ0s ↔ (𝑦 -s 1s ) ∈ ℕ0s)) |
8 | 5, 7 | orbi12d 917 | . 2 ⊢ (𝑥 = 𝑦 → ((𝑥 = 0s ∨ (𝑥 -s 1s ) ∈ ℕ0s) ↔ (𝑦 = 0s ∨ (𝑦 -s 1s ) ∈ ℕ0s))) |
9 | eqeq1 2744 | . . 3 ⊢ (𝑥 = (𝑦 +s 1s ) → (𝑥 = 0s ↔ (𝑦 +s 1s ) = 0s )) | |
10 | oveq1 7455 | . . . 4 ⊢ (𝑥 = (𝑦 +s 1s ) → (𝑥 -s 1s ) = ((𝑦 +s 1s ) -s 1s )) | |
11 | 10 | eleq1d 2829 | . . 3 ⊢ (𝑥 = (𝑦 +s 1s ) → ((𝑥 -s 1s ) ∈ ℕ0s ↔ ((𝑦 +s 1s ) -s 1s ) ∈ ℕ0s)) |
12 | 9, 11 | orbi12d 917 | . 2 ⊢ (𝑥 = (𝑦 +s 1s ) → ((𝑥 = 0s ∨ (𝑥 -s 1s ) ∈ ℕ0s) ↔ ((𝑦 +s 1s ) = 0s ∨ ((𝑦 +s 1s ) -s 1s ) ∈ ℕ0s))) |
13 | eqeq1 2744 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 = 0s ↔ 𝐴 = 0s )) | |
14 | oveq1 7455 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 -s 1s ) = (𝐴 -s 1s )) | |
15 | 14 | eleq1d 2829 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 -s 1s ) ∈ ℕ0s ↔ (𝐴 -s 1s ) ∈ ℕ0s)) |
16 | 13, 15 | orbi12d 917 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 = 0s ∨ (𝑥 -s 1s ) ∈ ℕ0s) ↔ (𝐴 = 0s ∨ (𝐴 -s 1s ) ∈ ℕ0s))) |
17 | eqid 2740 | . . 3 ⊢ 0s = 0s | |
18 | 17 | orci 864 | . 2 ⊢ ( 0s = 0s ∨ ( 0s -s 1s ) ∈ ℕ0s) |
19 | n0sno 28346 | . . . . . 6 ⊢ (𝑦 ∈ ℕ0s → 𝑦 ∈ No ) | |
20 | 1sno 27890 | . . . . . 6 ⊢ 1s ∈ No | |
21 | pncans 28120 | . . . . . 6 ⊢ ((𝑦 ∈ No ∧ 1s ∈ No ) → ((𝑦 +s 1s ) -s 1s ) = 𝑦) | |
22 | 19, 20, 21 | sylancl 585 | . . . . 5 ⊢ (𝑦 ∈ ℕ0s → ((𝑦 +s 1s ) -s 1s ) = 𝑦) |
23 | id 22 | . . . . 5 ⊢ (𝑦 ∈ ℕ0s → 𝑦 ∈ ℕ0s) | |
24 | 22, 23 | eqeltrd 2844 | . . . 4 ⊢ (𝑦 ∈ ℕ0s → ((𝑦 +s 1s ) -s 1s ) ∈ ℕ0s) |
25 | 24 | olcd 873 | . . 3 ⊢ (𝑦 ∈ ℕ0s → ((𝑦 +s 1s ) = 0s ∨ ((𝑦 +s 1s ) -s 1s ) ∈ ℕ0s)) |
26 | 25 | a1d 25 | . 2 ⊢ (𝑦 ∈ ℕ0s → ((𝑦 = 0s ∨ (𝑦 -s 1s ) ∈ ℕ0s) → ((𝑦 +s 1s ) = 0s ∨ ((𝑦 +s 1s ) -s 1s ) ∈ ℕ0s))) |
27 | 4, 8, 12, 16, 18, 26 | n0sind 28355 | 1 ⊢ (𝐴 ∈ ℕ0s → (𝐴 = 0s ∨ (𝐴 -s 1s ) ∈ ℕ0s)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 = wceq 1537 ∈ wcel 2108 (class class class)co 7448 No csur 27702 0s c0s 27885 1s c1s 27886 +s cadds 28010 -s csubs 28070 ℕ0scnn0s 28336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-ot 4657 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-nadd 8722 df-no 27705 df-slt 27706 df-bday 27707 df-sle 27808 df-sslt 27844 df-scut 27846 df-0s 27887 df-1s 27888 df-made 27904 df-old 27905 df-left 27907 df-right 27908 df-norec 27989 df-norec2 28000 df-adds 28011 df-negs 28071 df-subs 28072 df-n0s 28338 |
This theorem is referenced by: n0subs 28378 |
Copyright terms: Public domain | W3C validator |