MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0s0m1 Structured version   Visualization version   GIF version

Theorem n0s0m1 28374
Description: Every non-negative surreal integer is either zero or a successor. (Contributed by Scott Fenton, 26-May-2025.)
Assertion
Ref Expression
n0s0m1 (𝐴 ∈ ℕ0s → (𝐴 = 0s ∨ (𝐴 -s 1s ) ∈ ℕ0s))

Proof of Theorem n0s0m1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2739 . . 3 (𝑥 = 0s → (𝑥 = 0s ↔ 0s = 0s ))
2 oveq1 7438 . . . 4 (𝑥 = 0s → (𝑥 -s 1s ) = ( 0s -s 1s ))
32eleq1d 2824 . . 3 (𝑥 = 0s → ((𝑥 -s 1s ) ∈ ℕ0s ↔ ( 0s -s 1s ) ∈ ℕ0s))
41, 3orbi12d 918 . 2 (𝑥 = 0s → ((𝑥 = 0s ∨ (𝑥 -s 1s ) ∈ ℕ0s) ↔ ( 0s = 0s ∨ ( 0s -s 1s ) ∈ ℕ0s)))
5 eqeq1 2739 . . 3 (𝑥 = 𝑦 → (𝑥 = 0s𝑦 = 0s ))
6 oveq1 7438 . . . 4 (𝑥 = 𝑦 → (𝑥 -s 1s ) = (𝑦 -s 1s ))
76eleq1d 2824 . . 3 (𝑥 = 𝑦 → ((𝑥 -s 1s ) ∈ ℕ0s ↔ (𝑦 -s 1s ) ∈ ℕ0s))
85, 7orbi12d 918 . 2 (𝑥 = 𝑦 → ((𝑥 = 0s ∨ (𝑥 -s 1s ) ∈ ℕ0s) ↔ (𝑦 = 0s ∨ (𝑦 -s 1s ) ∈ ℕ0s)))
9 eqeq1 2739 . . 3 (𝑥 = (𝑦 +s 1s ) → (𝑥 = 0s ↔ (𝑦 +s 1s ) = 0s ))
10 oveq1 7438 . . . 4 (𝑥 = (𝑦 +s 1s ) → (𝑥 -s 1s ) = ((𝑦 +s 1s ) -s 1s ))
1110eleq1d 2824 . . 3 (𝑥 = (𝑦 +s 1s ) → ((𝑥 -s 1s ) ∈ ℕ0s ↔ ((𝑦 +s 1s ) -s 1s ) ∈ ℕ0s))
129, 11orbi12d 918 . 2 (𝑥 = (𝑦 +s 1s ) → ((𝑥 = 0s ∨ (𝑥 -s 1s ) ∈ ℕ0s) ↔ ((𝑦 +s 1s ) = 0s ∨ ((𝑦 +s 1s ) -s 1s ) ∈ ℕ0s)))
13 eqeq1 2739 . . 3 (𝑥 = 𝐴 → (𝑥 = 0s𝐴 = 0s ))
14 oveq1 7438 . . . 4 (𝑥 = 𝐴 → (𝑥 -s 1s ) = (𝐴 -s 1s ))
1514eleq1d 2824 . . 3 (𝑥 = 𝐴 → ((𝑥 -s 1s ) ∈ ℕ0s ↔ (𝐴 -s 1s ) ∈ ℕ0s))
1613, 15orbi12d 918 . 2 (𝑥 = 𝐴 → ((𝑥 = 0s ∨ (𝑥 -s 1s ) ∈ ℕ0s) ↔ (𝐴 = 0s ∨ (𝐴 -s 1s ) ∈ ℕ0s)))
17 eqid 2735 . . 3 0s = 0s
1817orci 865 . 2 ( 0s = 0s ∨ ( 0s -s 1s ) ∈ ℕ0s)
19 n0sno 28343 . . . . . 6 (𝑦 ∈ ℕ0s𝑦 No )
20 1sno 27887 . . . . . 6 1s No
21 pncans 28117 . . . . . 6 ((𝑦 No ∧ 1s No ) → ((𝑦 +s 1s ) -s 1s ) = 𝑦)
2219, 20, 21sylancl 586 . . . . 5 (𝑦 ∈ ℕ0s → ((𝑦 +s 1s ) -s 1s ) = 𝑦)
23 id 22 . . . . 5 (𝑦 ∈ ℕ0s𝑦 ∈ ℕ0s)
2422, 23eqeltrd 2839 . . . 4 (𝑦 ∈ ℕ0s → ((𝑦 +s 1s ) -s 1s ) ∈ ℕ0s)
2524olcd 874 . . 3 (𝑦 ∈ ℕ0s → ((𝑦 +s 1s ) = 0s ∨ ((𝑦 +s 1s ) -s 1s ) ∈ ℕ0s))
2625a1d 25 . 2 (𝑦 ∈ ℕ0s → ((𝑦 = 0s ∨ (𝑦 -s 1s ) ∈ ℕ0s) → ((𝑦 +s 1s ) = 0s ∨ ((𝑦 +s 1s ) -s 1s ) ∈ ℕ0s)))
274, 8, 12, 16, 18, 26n0sind 28352 1 (𝐴 ∈ ℕ0s → (𝐴 = 0s ∨ (𝐴 -s 1s ) ∈ ℕ0s))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1537  wcel 2106  (class class class)co 7431   No csur 27699   0s c0s 27882   1s c1s 27883   +s cadds 28007   -s csubs 28067  0scnn0s 28333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-nadd 8703  df-no 27702  df-slt 27703  df-bday 27704  df-sle 27805  df-sslt 27841  df-scut 27843  df-0s 27884  df-1s 27885  df-made 27901  df-old 27902  df-left 27904  df-right 27905  df-norec 27986  df-norec2 27997  df-adds 28008  df-negs 28068  df-subs 28069  df-n0s 28335
This theorem is referenced by:  n0subs  28375
  Copyright terms: Public domain W3C validator