MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expsp1 Structured version   Visualization version   GIF version

Theorem expsp1 28372
Description: Value of a surreal number raised to a non-negative integer power plus one. (Contributed by Scott Fenton, 6-Aug-2025.)
Assertion
Ref Expression
expsp1 ((𝐴 No 𝑁 ∈ ℕ0s) → (𝐴s(𝑁 +s 1s )) = ((𝐴s𝑁) ·s 𝐴))

Proof of Theorem expsp1
StepHypRef Expression
1 eln0s 28308 . 2 (𝑁 ∈ ℕ0s ↔ (𝑁 ∈ ℕs𝑁 = 0s ))
2 1sno 27796 . . . . . . 7 1s No
32a1i 11 . . . . . 6 ((𝐴 No 𝑁 ∈ ℕs) → 1s No )
4 dfnns2 28318 . . . . . . 7 s = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω)
54a1i 11 . . . . . 6 ((𝐴 No 𝑁 ∈ ℕs) → ℕs = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω))
6 simpr 484 . . . . . 6 ((𝐴 No 𝑁 ∈ ℕs) → 𝑁 ∈ ℕs)
73, 5, 6seqsp1 28262 . . . . 5 ((𝐴 No 𝑁 ∈ ℕs) → (seqs 1s ( ·s , (ℕs × {𝐴}))‘(𝑁 +s 1s )) = ((seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁) ·s ((ℕs × {𝐴})‘(𝑁 +s 1s ))))
8 peano2nns 28299 . . . . . . 7 (𝑁 ∈ ℕs → (𝑁 +s 1s ) ∈ ℕs)
9 fvconst2g 7199 . . . . . . 7 ((𝐴 No ∧ (𝑁 +s 1s ) ∈ ℕs) → ((ℕs × {𝐴})‘(𝑁 +s 1s )) = 𝐴)
108, 9sylan2 593 . . . . . 6 ((𝐴 No 𝑁 ∈ ℕs) → ((ℕs × {𝐴})‘(𝑁 +s 1s )) = 𝐴)
1110oveq2d 7426 . . . . 5 ((𝐴 No 𝑁 ∈ ℕs) → ((seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁) ·s ((ℕs × {𝐴})‘(𝑁 +s 1s ))) = ((seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁) ·s 𝐴))
127, 11eqtrd 2771 . . . 4 ((𝐴 No 𝑁 ∈ ℕs) → (seqs 1s ( ·s , (ℕs × {𝐴}))‘(𝑁 +s 1s )) = ((seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁) ·s 𝐴))
13 expsnnval 28369 . . . . 5 ((𝐴 No ∧ (𝑁 +s 1s ) ∈ ℕs) → (𝐴s(𝑁 +s 1s )) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘(𝑁 +s 1s )))
148, 13sylan2 593 . . . 4 ((𝐴 No 𝑁 ∈ ℕs) → (𝐴s(𝑁 +s 1s )) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘(𝑁 +s 1s )))
15 expsnnval 28369 . . . . 5 ((𝐴 No 𝑁 ∈ ℕs) → (𝐴s𝑁) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁))
1615oveq1d 7425 . . . 4 ((𝐴 No 𝑁 ∈ ℕs) → ((𝐴s𝑁) ·s 𝐴) = ((seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁) ·s 𝐴))
1712, 14, 163eqtr4d 2781 . . 3 ((𝐴 No 𝑁 ∈ ℕs) → (𝐴s(𝑁 +s 1s )) = ((𝐴s𝑁) ·s 𝐴))
18 mulslid 28102 . . . . 5 (𝐴 No → ( 1s ·s 𝐴) = 𝐴)
1918adantr 480 . . . 4 ((𝐴 No 𝑁 = 0s ) → ( 1s ·s 𝐴) = 𝐴)
20 oveq2 7418 . . . . . 6 (𝑁 = 0s → (𝐴s𝑁) = (𝐴s 0s ))
21 exps0 28370 . . . . . 6 (𝐴 No → (𝐴s 0s ) = 1s )
2220, 21sylan9eqr 2793 . . . . 5 ((𝐴 No 𝑁 = 0s ) → (𝐴s𝑁) = 1s )
2322oveq1d 7425 . . . 4 ((𝐴 No 𝑁 = 0s ) → ((𝐴s𝑁) ·s 𝐴) = ( 1s ·s 𝐴))
24 oveq1 7417 . . . . . . 7 (𝑁 = 0s → (𝑁 +s 1s ) = ( 0s +s 1s ))
25 addslid 27932 . . . . . . . 8 ( 1s No → ( 0s +s 1s ) = 1s )
262, 25ax-mp 5 . . . . . . 7 ( 0s +s 1s ) = 1s
2724, 26eqtrdi 2787 . . . . . 6 (𝑁 = 0s → (𝑁 +s 1s ) = 1s )
2827oveq2d 7426 . . . . 5 (𝑁 = 0s → (𝐴s(𝑁 +s 1s )) = (𝐴s 1s ))
29 exps1 28371 . . . . 5 (𝐴 No → (𝐴s 1s ) = 𝐴)
3028, 29sylan9eqr 2793 . . . 4 ((𝐴 No 𝑁 = 0s ) → (𝐴s(𝑁 +s 1s )) = 𝐴)
3119, 23, 303eqtr4rd 2782 . . 3 ((𝐴 No 𝑁 = 0s ) → (𝐴s(𝑁 +s 1s )) = ((𝐴s𝑁) ·s 𝐴))
3217, 31jaodan 959 . 2 ((𝐴 No ∧ (𝑁 ∈ ℕs𝑁 = 0s )) → (𝐴s(𝑁 +s 1s )) = ((𝐴s𝑁) ·s 𝐴))
331, 32sylan2b 594 1 ((𝐴 No 𝑁 ∈ ℕ0s) → (𝐴s(𝑁 +s 1s )) = ((𝐴s𝑁) ·s 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  Vcvv 3464  {csn 4606  cmpt 5206   × cxp 5657  cima 5662  cfv 6536  (class class class)co 7410  ωcom 7866  reccrdg 8428   No csur 27608   0s c0s 27791   1s c1s 27792   +s cadds 27923   ·s cmuls 28066  seqscseqs 28234  0scnn0s 28263  scnns 28264  scexps 28355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-nadd 8683  df-no 27611  df-slt 27612  df-bday 27613  df-sle 27714  df-sslt 27750  df-scut 27752  df-0s 27793  df-1s 27794  df-made 27812  df-old 27813  df-left 27815  df-right 27816  df-norec 27902  df-norec2 27913  df-adds 27924  df-negs 27984  df-subs 27985  df-muls 28067  df-seqs 28235  df-n0s 28265  df-nns 28266  df-zs 28324  df-exps 28356
This theorem is referenced by:  expscllem  28373  expadds  28377  expsne0  28378  expsgt0  28379  pw2recs  28380  pw2cut  28392  zs12bday  28400
  Copyright terms: Public domain W3C validator