Proof of Theorem expsp1
Step | Hyp | Ref
| Expression |
1 | | eln0s 28376 |
. 2
⊢ (𝑁 ∈ ℕ0s
↔ (𝑁 ∈
ℕs ∨ 𝑁
= 0s )) |
2 | | 1sno 27890 |
. . . . . . 7
⊢
1s ∈ No |
3 | 2 | a1i 11 |
. . . . . 6
⊢ ((𝐴 ∈
No ∧ 𝑁 ∈
ℕs) → 1s ∈ No
) |
4 | | dfnns2 28380 |
. . . . . . 7
⊢
ℕs = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
1s ) “ ω) |
5 | 4 | a1i 11 |
. . . . . 6
⊢ ((𝐴 ∈
No ∧ 𝑁 ∈
ℕs) → ℕs = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
1s ) “ ω)) |
6 | | simpr 484 |
. . . . . 6
⊢ ((𝐴 ∈
No ∧ 𝑁 ∈
ℕs) → 𝑁 ∈
ℕs) |
7 | 3, 5, 6 | seqsp1 28335 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ 𝑁 ∈
ℕs) → (seqs 1s (
·s , (ℕs × {𝐴}))‘(𝑁 +s 1s )) =
((seqs 1s ( ·s , (ℕs
× {𝐴}))‘𝑁) ·s
((ℕs × {𝐴})‘(𝑁 +s 1s
)))) |
8 | | peano2nns 28371 |
. . . . . . 7
⊢ (𝑁 ∈ ℕs
→ (𝑁 +s
1s ) ∈ ℕs) |
9 | | fvconst2g 7239 |
. . . . . . 7
⊢ ((𝐴 ∈
No ∧ (𝑁
+s 1s ) ∈ ℕs) →
((ℕs × {𝐴})‘(𝑁 +s 1s )) = 𝐴) |
10 | 8, 9 | sylan2 592 |
. . . . . 6
⊢ ((𝐴 ∈
No ∧ 𝑁 ∈
ℕs) → ((ℕs × {𝐴})‘(𝑁 +s 1s )) = 𝐴) |
11 | 10 | oveq2d 7464 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ 𝑁 ∈
ℕs) → ((seqs 1s (
·s , (ℕs × {𝐴}))‘𝑁) ·s ((ℕs
× {𝐴})‘(𝑁 +s 1s )))
= ((seqs 1s ( ·s , (ℕs
× {𝐴}))‘𝑁) ·s 𝐴)) |
12 | 7, 11 | eqtrd 2780 |
. . . 4
⊢ ((𝐴 ∈
No ∧ 𝑁 ∈
ℕs) → (seqs 1s (
·s , (ℕs × {𝐴}))‘(𝑁 +s 1s )) =
((seqs 1s ( ·s , (ℕs
× {𝐴}))‘𝑁) ·s 𝐴)) |
13 | | expsnnval 28427 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ (𝑁
+s 1s ) ∈ ℕs) → (𝐴↑s(𝑁 +s 1s ))
= (seqs 1s ( ·s , (ℕs
× {𝐴}))‘(𝑁 +s 1s
))) |
14 | 8, 13 | sylan2 592 |
. . . 4
⊢ ((𝐴 ∈
No ∧ 𝑁 ∈
ℕs) → (𝐴↑s(𝑁 +s 1s )) =
(seqs 1s ( ·s , (ℕs
× {𝐴}))‘(𝑁 +s 1s
))) |
15 | | expsnnval 28427 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ 𝑁 ∈
ℕs) → (𝐴↑s𝑁) = (seqs 1s (
·s , (ℕs × {𝐴}))‘𝑁)) |
16 | 15 | oveq1d 7463 |
. . . 4
⊢ ((𝐴 ∈
No ∧ 𝑁 ∈
ℕs) → ((𝐴↑s𝑁) ·s 𝐴) = ((seqs 1s (
·s , (ℕs × {𝐴}))‘𝑁) ·s 𝐴)) |
17 | 12, 14, 16 | 3eqtr4d 2790 |
. . 3
⊢ ((𝐴 ∈
No ∧ 𝑁 ∈
ℕs) → (𝐴↑s(𝑁 +s 1s )) = ((𝐴↑s𝑁) ·s 𝐴)) |
18 | | mulslid 28186 |
. . . . 5
⊢ (𝐴 ∈
No → ( 1s ·s 𝐴) = 𝐴) |
19 | 18 | adantr 480 |
. . . 4
⊢ ((𝐴 ∈
No ∧ 𝑁 =
0s ) → ( 1s ·s 𝐴) = 𝐴) |
20 | | oveq2 7456 |
. . . . . 6
⊢ (𝑁 = 0s → (𝐴↑s𝑁) = (𝐴↑s 0s
)) |
21 | | exps0 28428 |
. . . . . 6
⊢ (𝐴 ∈
No → (𝐴↑s 0s ) =
1s ) |
22 | 20, 21 | sylan9eqr 2802 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ 𝑁 =
0s ) → (𝐴↑s𝑁) = 1s ) |
23 | 22 | oveq1d 7463 |
. . . 4
⊢ ((𝐴 ∈
No ∧ 𝑁 =
0s ) → ((𝐴↑s𝑁) ·s 𝐴) = ( 1s ·s
𝐴)) |
24 | | oveq1 7455 |
. . . . . . 7
⊢ (𝑁 = 0s → (𝑁 +s 1s ) =
( 0s +s 1s )) |
25 | | addslid 28019 |
. . . . . . . 8
⊢ (
1s ∈ No → ( 0s
+s 1s ) = 1s ) |
26 | 2, 25 | ax-mp 5 |
. . . . . . 7
⊢ (
0s +s 1s ) = 1s |
27 | 24, 26 | eqtrdi 2796 |
. . . . . 6
⊢ (𝑁 = 0s → (𝑁 +s 1s ) =
1s ) |
28 | 27 | oveq2d 7464 |
. . . . 5
⊢ (𝑁 = 0s → (𝐴↑s(𝑁 +s 1s ))
= (𝐴↑s
1s )) |
29 | | exps1 28429 |
. . . . 5
⊢ (𝐴 ∈
No → (𝐴↑s 1s ) = 𝐴) |
30 | 28, 29 | sylan9eqr 2802 |
. . . 4
⊢ ((𝐴 ∈
No ∧ 𝑁 =
0s ) → (𝐴↑s(𝑁 +s 1s )) = 𝐴) |
31 | 19, 23, 30 | 3eqtr4rd 2791 |
. . 3
⊢ ((𝐴 ∈
No ∧ 𝑁 =
0s ) → (𝐴↑s(𝑁 +s 1s )) = ((𝐴↑s𝑁) ·s 𝐴)) |
32 | 17, 31 | jaodan 958 |
. 2
⊢ ((𝐴 ∈
No ∧ (𝑁 ∈
ℕs ∨ 𝑁
= 0s )) → (𝐴↑s(𝑁 +s 1s )) = ((𝐴↑s𝑁) ·s 𝐴)) |
33 | 1, 32 | sylan2b 593 |
1
⊢ ((𝐴 ∈
No ∧ 𝑁 ∈
ℕ0s) → (𝐴↑s(𝑁 +s 1s )) = ((𝐴↑s𝑁) ·s 𝐴)) |