MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expsp1 Structured version   Visualization version   GIF version

Theorem expsp1 28339
Description: Value of a surreal number raised to a non-negative integer power plus one. (Contributed by Scott Fenton, 6-Aug-2025.)
Assertion
Ref Expression
expsp1 ((𝐴 No 𝑁 ∈ ℕ0s) → (𝐴s(𝑁 +s 1s )) = ((𝐴s𝑁) ·s 𝐴))

Proof of Theorem expsp1
StepHypRef Expression
1 eln0s 28274 . 2 (𝑁 ∈ ℕ0s ↔ (𝑁 ∈ ℕs𝑁 = 0s ))
2 1sno 27759 . . . . . . 7 1s No
32a1i 11 . . . . . 6 ((𝐴 No 𝑁 ∈ ℕs) → 1s No )
4 dfnns2 28284 . . . . . . 7 s = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω)
54a1i 11 . . . . . 6 ((𝐴 No 𝑁 ∈ ℕs) → ℕs = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω))
6 simpr 484 . . . . . 6 ((𝐴 No 𝑁 ∈ ℕs) → 𝑁 ∈ ℕs)
73, 5, 6seqsp1 28228 . . . . 5 ((𝐴 No 𝑁 ∈ ℕs) → (seqs 1s ( ·s , (ℕs × {𝐴}))‘(𝑁 +s 1s )) = ((seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁) ·s ((ℕs × {𝐴})‘(𝑁 +s 1s ))))
8 peano2nns 28265 . . . . . . 7 (𝑁 ∈ ℕs → (𝑁 +s 1s ) ∈ ℕs)
9 fvconst2g 7142 . . . . . . 7 ((𝐴 No ∧ (𝑁 +s 1s ) ∈ ℕs) → ((ℕs × {𝐴})‘(𝑁 +s 1s )) = 𝐴)
108, 9sylan2 593 . . . . . 6 ((𝐴 No 𝑁 ∈ ℕs) → ((ℕs × {𝐴})‘(𝑁 +s 1s )) = 𝐴)
1110oveq2d 7369 . . . . 5 ((𝐴 No 𝑁 ∈ ℕs) → ((seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁) ·s ((ℕs × {𝐴})‘(𝑁 +s 1s ))) = ((seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁) ·s 𝐴))
127, 11eqtrd 2764 . . . 4 ((𝐴 No 𝑁 ∈ ℕs) → (seqs 1s ( ·s , (ℕs × {𝐴}))‘(𝑁 +s 1s )) = ((seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁) ·s 𝐴))
13 expsnnval 28336 . . . . 5 ((𝐴 No ∧ (𝑁 +s 1s ) ∈ ℕs) → (𝐴s(𝑁 +s 1s )) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘(𝑁 +s 1s )))
148, 13sylan2 593 . . . 4 ((𝐴 No 𝑁 ∈ ℕs) → (𝐴s(𝑁 +s 1s )) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘(𝑁 +s 1s )))
15 expsnnval 28336 . . . . 5 ((𝐴 No 𝑁 ∈ ℕs) → (𝐴s𝑁) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁))
1615oveq1d 7368 . . . 4 ((𝐴 No 𝑁 ∈ ℕs) → ((𝐴s𝑁) ·s 𝐴) = ((seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁) ·s 𝐴))
1712, 14, 163eqtr4d 2774 . . 3 ((𝐴 No 𝑁 ∈ ℕs) → (𝐴s(𝑁 +s 1s )) = ((𝐴s𝑁) ·s 𝐴))
18 mulslid 28068 . . . . 5 (𝐴 No → ( 1s ·s 𝐴) = 𝐴)
1918adantr 480 . . . 4 ((𝐴 No 𝑁 = 0s ) → ( 1s ·s 𝐴) = 𝐴)
20 oveq2 7361 . . . . . 6 (𝑁 = 0s → (𝐴s𝑁) = (𝐴s 0s ))
21 exps0 28337 . . . . . 6 (𝐴 No → (𝐴s 0s ) = 1s )
2220, 21sylan9eqr 2786 . . . . 5 ((𝐴 No 𝑁 = 0s ) → (𝐴s𝑁) = 1s )
2322oveq1d 7368 . . . 4 ((𝐴 No 𝑁 = 0s ) → ((𝐴s𝑁) ·s 𝐴) = ( 1s ·s 𝐴))
24 oveq1 7360 . . . . . . 7 (𝑁 = 0s → (𝑁 +s 1s ) = ( 0s +s 1s ))
25 addslid 27898 . . . . . . . 8 ( 1s No → ( 0s +s 1s ) = 1s )
262, 25ax-mp 5 . . . . . . 7 ( 0s +s 1s ) = 1s
2724, 26eqtrdi 2780 . . . . . 6 (𝑁 = 0s → (𝑁 +s 1s ) = 1s )
2827oveq2d 7369 . . . . 5 (𝑁 = 0s → (𝐴s(𝑁 +s 1s )) = (𝐴s 1s ))
29 exps1 28338 . . . . 5 (𝐴 No → (𝐴s 1s ) = 𝐴)
3028, 29sylan9eqr 2786 . . . 4 ((𝐴 No 𝑁 = 0s ) → (𝐴s(𝑁 +s 1s )) = 𝐴)
3119, 23, 303eqtr4rd 2775 . . 3 ((𝐴 No 𝑁 = 0s ) → (𝐴s(𝑁 +s 1s )) = ((𝐴s𝑁) ·s 𝐴))
3217, 31jaodan 959 . 2 ((𝐴 No ∧ (𝑁 ∈ ℕs𝑁 = 0s )) → (𝐴s(𝑁 +s 1s )) = ((𝐴s𝑁) ·s 𝐴))
331, 32sylan2b 594 1 ((𝐴 No 𝑁 ∈ ℕ0s) → (𝐴s(𝑁 +s 1s )) = ((𝐴s𝑁) ·s 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  Vcvv 3438  {csn 4579  cmpt 5176   × cxp 5621  cima 5626  cfv 6486  (class class class)co 7353  ωcom 7806  reccrdg 8338   No csur 27567   0s c0s 27754   1s c1s 27755   +s cadds 27889   ·s cmuls 28032  seqscseqs 28200  0scnn0s 28229  scnns 28230  scexps 28322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-nadd 8591  df-no 27570  df-slt 27571  df-bday 27572  df-sle 27673  df-sslt 27710  df-scut 27712  df-0s 27756  df-1s 27757  df-made 27775  df-old 27776  df-left 27778  df-right 27779  df-norec 27868  df-norec2 27879  df-adds 27890  df-negs 27950  df-subs 27951  df-muls 28033  df-seqs 28201  df-n0s 28231  df-nns 28232  df-zs 28290  df-exps 28323
This theorem is referenced by:  expscllem  28340  expadds  28345  expsne0  28346  expsgt0  28347  pw2recs  28348  pw2cut  28366  zs12zodd  28377  zs12bday  28379
  Copyright terms: Public domain W3C validator