MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expsp1 Structured version   Visualization version   GIF version

Theorem expsp1 28362
Description: Value of a surreal number raised to a non-negative integer power plus one. (Contributed by Scott Fenton, 6-Aug-2025.)
Assertion
Ref Expression
expsp1 ((𝐴 No 𝑁 ∈ ℕ0s) → (𝐴s(𝑁 +s 1s )) = ((𝐴s𝑁) ·s 𝐴))

Proof of Theorem expsp1
StepHypRef Expression
1 eln0s 28297 . 2 (𝑁 ∈ ℕ0s ↔ (𝑁 ∈ ℕs𝑁 = 0s ))
2 1sno 27781 . . . . . . 7 1s No
32a1i 11 . . . . . 6 ((𝐴 No 𝑁 ∈ ℕs) → 1s No )
4 dfnns2 28307 . . . . . . 7 s = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω)
54a1i 11 . . . . . 6 ((𝐴 No 𝑁 ∈ ℕs) → ℕs = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω))
6 simpr 484 . . . . . 6 ((𝐴 No 𝑁 ∈ ℕs) → 𝑁 ∈ ℕs)
73, 5, 6seqsp1 28251 . . . . 5 ((𝐴 No 𝑁 ∈ ℕs) → (seqs 1s ( ·s , (ℕs × {𝐴}))‘(𝑁 +s 1s )) = ((seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁) ·s ((ℕs × {𝐴})‘(𝑁 +s 1s ))))
8 peano2nns 28288 . . . . . . 7 (𝑁 ∈ ℕs → (𝑁 +s 1s ) ∈ ℕs)
9 fvconst2g 7145 . . . . . . 7 ((𝐴 No ∧ (𝑁 +s 1s ) ∈ ℕs) → ((ℕs × {𝐴})‘(𝑁 +s 1s )) = 𝐴)
108, 9sylan2 593 . . . . . 6 ((𝐴 No 𝑁 ∈ ℕs) → ((ℕs × {𝐴})‘(𝑁 +s 1s )) = 𝐴)
1110oveq2d 7371 . . . . 5 ((𝐴 No 𝑁 ∈ ℕs) → ((seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁) ·s ((ℕs × {𝐴})‘(𝑁 +s 1s ))) = ((seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁) ·s 𝐴))
127, 11eqtrd 2768 . . . 4 ((𝐴 No 𝑁 ∈ ℕs) → (seqs 1s ( ·s , (ℕs × {𝐴}))‘(𝑁 +s 1s )) = ((seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁) ·s 𝐴))
13 expsnnval 28359 . . . . 5 ((𝐴 No ∧ (𝑁 +s 1s ) ∈ ℕs) → (𝐴s(𝑁 +s 1s )) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘(𝑁 +s 1s )))
148, 13sylan2 593 . . . 4 ((𝐴 No 𝑁 ∈ ℕs) → (𝐴s(𝑁 +s 1s )) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘(𝑁 +s 1s )))
15 expsnnval 28359 . . . . 5 ((𝐴 No 𝑁 ∈ ℕs) → (𝐴s𝑁) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁))
1615oveq1d 7370 . . . 4 ((𝐴 No 𝑁 ∈ ℕs) → ((𝐴s𝑁) ·s 𝐴) = ((seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁) ·s 𝐴))
1712, 14, 163eqtr4d 2778 . . 3 ((𝐴 No 𝑁 ∈ ℕs) → (𝐴s(𝑁 +s 1s )) = ((𝐴s𝑁) ·s 𝐴))
18 mulslid 28091 . . . . 5 (𝐴 No → ( 1s ·s 𝐴) = 𝐴)
1918adantr 480 . . . 4 ((𝐴 No 𝑁 = 0s ) → ( 1s ·s 𝐴) = 𝐴)
20 oveq2 7363 . . . . . 6 (𝑁 = 0s → (𝐴s𝑁) = (𝐴s 0s ))
21 exps0 28360 . . . . . 6 (𝐴 No → (𝐴s 0s ) = 1s )
2220, 21sylan9eqr 2790 . . . . 5 ((𝐴 No 𝑁 = 0s ) → (𝐴s𝑁) = 1s )
2322oveq1d 7370 . . . 4 ((𝐴 No 𝑁 = 0s ) → ((𝐴s𝑁) ·s 𝐴) = ( 1s ·s 𝐴))
24 oveq1 7362 . . . . . . 7 (𝑁 = 0s → (𝑁 +s 1s ) = ( 0s +s 1s ))
25 addslid 27921 . . . . . . . 8 ( 1s No → ( 0s +s 1s ) = 1s )
262, 25ax-mp 5 . . . . . . 7 ( 0s +s 1s ) = 1s
2724, 26eqtrdi 2784 . . . . . 6 (𝑁 = 0s → (𝑁 +s 1s ) = 1s )
2827oveq2d 7371 . . . . 5 (𝑁 = 0s → (𝐴s(𝑁 +s 1s )) = (𝐴s 1s ))
29 exps1 28361 . . . . 5 (𝐴 No → (𝐴s 1s ) = 𝐴)
3028, 29sylan9eqr 2790 . . . 4 ((𝐴 No 𝑁 = 0s ) → (𝐴s(𝑁 +s 1s )) = 𝐴)
3119, 23, 303eqtr4rd 2779 . . 3 ((𝐴 No 𝑁 = 0s ) → (𝐴s(𝑁 +s 1s )) = ((𝐴s𝑁) ·s 𝐴))
3217, 31jaodan 959 . 2 ((𝐴 No ∧ (𝑁 ∈ ℕs𝑁 = 0s )) → (𝐴s(𝑁 +s 1s )) = ((𝐴s𝑁) ·s 𝐴))
331, 32sylan2b 594 1 ((𝐴 No 𝑁 ∈ ℕ0s) → (𝐴s(𝑁 +s 1s )) = ((𝐴s𝑁) ·s 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2113  Vcvv 3438  {csn 4577  cmpt 5176   × cxp 5619  cima 5624  cfv 6489  (class class class)co 7355  ωcom 7805  reccrdg 8337   No csur 27588   0s c0s 27776   1s c1s 27777   +s cadds 27912   ·s cmuls 28055  seqscseqs 28223  0scnn0s 28252  scnns 28253  scexps 28345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-nadd 8590  df-no 27591  df-slt 27592  df-bday 27593  df-sle 27694  df-sslt 27731  df-scut 27733  df-0s 27778  df-1s 27779  df-made 27798  df-old 27799  df-left 27801  df-right 27802  df-norec 27891  df-norec2 27902  df-adds 27913  df-negs 27973  df-subs 27974  df-muls 28056  df-seqs 28224  df-n0s 28254  df-nns 28255  df-zs 28313  df-exps 28346
This theorem is referenced by:  expscllem  28363  expadds  28368  expsne0  28369  expsgt0  28370  pw2recs  28371  pw2cut  28390  zs12zodd  28402  zs12bday  28404
  Copyright terms: Public domain W3C validator