MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expsp1 Structured version   Visualization version   GIF version

Theorem expsp1 28315
Description: Value of a surreal number raised to a non-negative integer power plus one. (Contributed by Scott Fenton, 6-Aug-2025.)
Assertion
Ref Expression
expsp1 ((𝐴 No 𝑁 ∈ ℕ0s) → (𝐴s(𝑁 +s 1s )) = ((𝐴s𝑁) ·s 𝐴))

Proof of Theorem expsp1
StepHypRef Expression
1 eln0s 28251 . 2 (𝑁 ∈ ℕ0s ↔ (𝑁 ∈ ℕs𝑁 = 0s ))
2 1sno 27739 . . . . . . 7 1s No
32a1i 11 . . . . . 6 ((𝐴 No 𝑁 ∈ ℕs) → 1s No )
4 dfnns2 28261 . . . . . . 7 s = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω)
54a1i 11 . . . . . 6 ((𝐴 No 𝑁 ∈ ℕs) → ℕs = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 1s ) “ ω))
6 simpr 484 . . . . . 6 ((𝐴 No 𝑁 ∈ ℕs) → 𝑁 ∈ ℕs)
73, 5, 6seqsp1 28205 . . . . 5 ((𝐴 No 𝑁 ∈ ℕs) → (seqs 1s ( ·s , (ℕs × {𝐴}))‘(𝑁 +s 1s )) = ((seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁) ·s ((ℕs × {𝐴})‘(𝑁 +s 1s ))))
8 peano2nns 28242 . . . . . . 7 (𝑁 ∈ ℕs → (𝑁 +s 1s ) ∈ ℕs)
9 fvconst2g 7176 . . . . . . 7 ((𝐴 No ∧ (𝑁 +s 1s ) ∈ ℕs) → ((ℕs × {𝐴})‘(𝑁 +s 1s )) = 𝐴)
108, 9sylan2 593 . . . . . 6 ((𝐴 No 𝑁 ∈ ℕs) → ((ℕs × {𝐴})‘(𝑁 +s 1s )) = 𝐴)
1110oveq2d 7403 . . . . 5 ((𝐴 No 𝑁 ∈ ℕs) → ((seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁) ·s ((ℕs × {𝐴})‘(𝑁 +s 1s ))) = ((seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁) ·s 𝐴))
127, 11eqtrd 2764 . . . 4 ((𝐴 No 𝑁 ∈ ℕs) → (seqs 1s ( ·s , (ℕs × {𝐴}))‘(𝑁 +s 1s )) = ((seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁) ·s 𝐴))
13 expsnnval 28312 . . . . 5 ((𝐴 No ∧ (𝑁 +s 1s ) ∈ ℕs) → (𝐴s(𝑁 +s 1s )) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘(𝑁 +s 1s )))
148, 13sylan2 593 . . . 4 ((𝐴 No 𝑁 ∈ ℕs) → (𝐴s(𝑁 +s 1s )) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘(𝑁 +s 1s )))
15 expsnnval 28312 . . . . 5 ((𝐴 No 𝑁 ∈ ℕs) → (𝐴s𝑁) = (seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁))
1615oveq1d 7402 . . . 4 ((𝐴 No 𝑁 ∈ ℕs) → ((𝐴s𝑁) ·s 𝐴) = ((seqs 1s ( ·s , (ℕs × {𝐴}))‘𝑁) ·s 𝐴))
1712, 14, 163eqtr4d 2774 . . 3 ((𝐴 No 𝑁 ∈ ℕs) → (𝐴s(𝑁 +s 1s )) = ((𝐴s𝑁) ·s 𝐴))
18 mulslid 28045 . . . . 5 (𝐴 No → ( 1s ·s 𝐴) = 𝐴)
1918adantr 480 . . . 4 ((𝐴 No 𝑁 = 0s ) → ( 1s ·s 𝐴) = 𝐴)
20 oveq2 7395 . . . . . 6 (𝑁 = 0s → (𝐴s𝑁) = (𝐴s 0s ))
21 exps0 28313 . . . . . 6 (𝐴 No → (𝐴s 0s ) = 1s )
2220, 21sylan9eqr 2786 . . . . 5 ((𝐴 No 𝑁 = 0s ) → (𝐴s𝑁) = 1s )
2322oveq1d 7402 . . . 4 ((𝐴 No 𝑁 = 0s ) → ((𝐴s𝑁) ·s 𝐴) = ( 1s ·s 𝐴))
24 oveq1 7394 . . . . . . 7 (𝑁 = 0s → (𝑁 +s 1s ) = ( 0s +s 1s ))
25 addslid 27875 . . . . . . . 8 ( 1s No → ( 0s +s 1s ) = 1s )
262, 25ax-mp 5 . . . . . . 7 ( 0s +s 1s ) = 1s
2724, 26eqtrdi 2780 . . . . . 6 (𝑁 = 0s → (𝑁 +s 1s ) = 1s )
2827oveq2d 7403 . . . . 5 (𝑁 = 0s → (𝐴s(𝑁 +s 1s )) = (𝐴s 1s ))
29 exps1 28314 . . . . 5 (𝐴 No → (𝐴s 1s ) = 𝐴)
3028, 29sylan9eqr 2786 . . . 4 ((𝐴 No 𝑁 = 0s ) → (𝐴s(𝑁 +s 1s )) = 𝐴)
3119, 23, 303eqtr4rd 2775 . . 3 ((𝐴 No 𝑁 = 0s ) → (𝐴s(𝑁 +s 1s )) = ((𝐴s𝑁) ·s 𝐴))
3217, 31jaodan 959 . 2 ((𝐴 No ∧ (𝑁 ∈ ℕs𝑁 = 0s )) → (𝐴s(𝑁 +s 1s )) = ((𝐴s𝑁) ·s 𝐴))
331, 32sylan2b 594 1 ((𝐴 No 𝑁 ∈ ℕ0s) → (𝐴s(𝑁 +s 1s )) = ((𝐴s𝑁) ·s 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  Vcvv 3447  {csn 4589  cmpt 5188   × cxp 5636  cima 5641  cfv 6511  (class class class)co 7387  ωcom 7842  reccrdg 8377   No csur 27551   0s c0s 27734   1s c1s 27735   +s cadds 27866   ·s cmuls 28009  seqscseqs 28177  0scnn0s 28206  scnns 28207  scexps 28298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-nadd 8630  df-no 27554  df-slt 27555  df-bday 27556  df-sle 27657  df-sslt 27693  df-scut 27695  df-0s 27736  df-1s 27737  df-made 27755  df-old 27756  df-left 27758  df-right 27759  df-norec 27845  df-norec2 27856  df-adds 27867  df-negs 27927  df-subs 27928  df-muls 28010  df-seqs 28178  df-n0s 28208  df-nns 28209  df-zs 28267  df-exps 28299
This theorem is referenced by:  expscllem  28316  expadds  28320  expsne0  28321  expsgt0  28322  pw2recs  28323  pw2cut  28335  zs12bday  28343
  Copyright terms: Public domain W3C validator