MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elznns Structured version   Visualization version   GIF version

Theorem elznns 28332
Description: Surreal integer property expressed in terms of positive integers and non-negative integers. (Contributed by Scott Fenton, 25-Jul-2025.)
Assertion
Ref Expression
elznns (𝑁 ∈ ℤs ↔ (𝑁 No ∧ (𝑁 ∈ ℕs ∨ ( -us𝑁) ∈ ℕ0s)))

Proof of Theorem elznns
StepHypRef Expression
1 elzs2 28329 . 2 (𝑁 ∈ ℤs ↔ (𝑁 No ∧ (𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs)))
2 3orass 1089 . . . 4 ((𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs) ↔ (𝑁 ∈ ℕs ∨ (𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs)))
3 eln0s 28293 . . . . . . 7 (( -us𝑁) ∈ ℕ0s ↔ (( -us𝑁) ∈ ℕs ∨ ( -us𝑁) = 0s ))
4 negs0s 27974 . . . . . . . . . 10 ( -us ‘ 0s ) = 0s
54eqeq2i 2744 . . . . . . . . 9 (( -us𝑁) = ( -us ‘ 0s ) ↔ ( -us𝑁) = 0s )
6 0sno 27776 . . . . . . . . . 10 0s No
7 negs11 27997 . . . . . . . . . 10 ((𝑁 No ∧ 0s No ) → (( -us𝑁) = ( -us ‘ 0s ) ↔ 𝑁 = 0s ))
86, 7mpan2 691 . . . . . . . . 9 (𝑁 No → (( -us𝑁) = ( -us ‘ 0s ) ↔ 𝑁 = 0s ))
95, 8bitr3id 285 . . . . . . . 8 (𝑁 No → (( -us𝑁) = 0s𝑁 = 0s ))
109orbi2d 915 . . . . . . 7 (𝑁 No → ((( -us𝑁) ∈ ℕs ∨ ( -us𝑁) = 0s ) ↔ (( -us𝑁) ∈ ℕs𝑁 = 0s )))
113, 10bitrid 283 . . . . . 6 (𝑁 No → (( -us𝑁) ∈ ℕ0s ↔ (( -us𝑁) ∈ ℕs𝑁 = 0s )))
12 orcom 870 . . . . . 6 ((( -us𝑁) ∈ ℕs𝑁 = 0s ) ↔ (𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs))
1311, 12bitrdi 287 . . . . 5 (𝑁 No → (( -us𝑁) ∈ ℕ0s ↔ (𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs)))
1413orbi2d 915 . . . 4 (𝑁 No → ((𝑁 ∈ ℕs ∨ ( -us𝑁) ∈ ℕ0s) ↔ (𝑁 ∈ ℕs ∨ (𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs))))
152, 14bitr4id 290 . . 3 (𝑁 No → ((𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs) ↔ (𝑁 ∈ ℕs ∨ ( -us𝑁) ∈ ℕ0s)))
1615pm5.32i 574 . 2 ((𝑁 No ∧ (𝑁 ∈ ℕs𝑁 = 0s ∨ ( -us𝑁) ∈ ℕs)) ↔ (𝑁 No ∧ (𝑁 ∈ ℕs ∨ ( -us𝑁) ∈ ℕ0s)))
171, 16bitri 275 1 (𝑁 ∈ ℤs ↔ (𝑁 No ∧ (𝑁 ∈ ℕs ∨ ( -us𝑁) ∈ ℕ0s)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847  w3o 1085   = wceq 1541  wcel 2111  cfv 6487   No csur 27584   0s c0s 27772   -us cnegs 27967  0scnn0s 28248  scnns 28249  sczs 28308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-ot 4584  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-nadd 8587  df-no 27587  df-slt 27588  df-bday 27589  df-sle 27690  df-sslt 27727  df-scut 27729  df-0s 27774  df-1s 27775  df-made 27794  df-old 27795  df-left 27797  df-right 27798  df-norec 27887  df-norec2 27898  df-adds 27909  df-negs 27969  df-subs 27970  df-n0s 28250  df-nns 28251  df-zs 28309
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator