Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0ssrempt | Structured version Visualization version GIF version |
Description: If a sum of nonnegative extended reals is real, than any subsum is real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
sge0ssrempt.xph | ⊢ Ⅎ𝑥𝜑 |
sge0ssrempt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sge0ssrempt.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
sge0ssrempt.re | ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ) |
sge0ssrempt.c | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
Ref | Expression |
---|---|
sge0ssrempt | ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐶 ↦ 𝐵)) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0ssrempt.c | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
2 | 1 | resmptd 5885 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ 𝐵)) |
3 | 2 | fveq2d 6667 | . . 3 ⊢ (𝜑 → (Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝐶)) = (Σ^‘(𝑥 ∈ 𝐶 ↦ 𝐵))) |
4 | 3 | eqcomd 2764 | . 2 ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐶 ↦ 𝐵)) = (Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝐶))) |
5 | sge0ssrempt.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | sge0ssrempt.xph | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
7 | sge0ssrempt.b | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
8 | eqid 2758 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
9 | 6, 7, 8 | fmptdf 6878 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
10 | sge0ssrempt.re | . . 3 ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ) | |
11 | 5, 9, 10 | sge0ssre 43437 | . 2 ⊢ (𝜑 → (Σ^‘((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝐶)) ∈ ℝ) |
12 | 4, 11 | eqeltrd 2852 | 1 ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐶 ↦ 𝐵)) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 Ⅎwnf 1785 ∈ wcel 2111 ⊆ wss 3860 ↦ cmpt 5116 ↾ cres 5530 ‘cfv 6340 (class class class)co 7156 ℝcr 10587 0cc0 10588 +∞cpnf 10723 [,]cicc 12795 Σ^csumge0 43402 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-inf2 9150 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-pre-sup 10666 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-se 5488 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-isom 6349 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-sup 8952 df-oi 9020 df-card 9414 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-div 11349 df-nn 11688 df-2 11750 df-3 11751 df-n0 11948 df-z 12034 df-uz 12296 df-rp 12444 df-ico 12798 df-icc 12799 df-fz 12953 df-fzo 13096 df-seq 13432 df-exp 13493 df-hash 13754 df-cj 14519 df-re 14520 df-im 14521 df-sqrt 14655 df-abs 14656 df-clim 14906 df-sum 15104 df-sumge0 43403 |
This theorem is referenced by: sge0iunmptlemre 43455 hoidmv1lelem2 43632 hoidmvlelem2 43636 |
Copyright terms: Public domain | W3C validator |