Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > gsumsplit2f | Structured version Visualization version GIF version |
Description: Split a group sum into two parts. (Contributed by AV, 4-Sep-2019.) |
Ref | Expression |
---|---|
gsumsplit2f.n | ⊢ Ⅎ𝑘𝜑 |
gsumsplit2f.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumsplit2f.z | ⊢ 0 = (0g‘𝐺) |
gsumsplit2f.p | ⊢ + = (+g‘𝐺) |
gsumsplit2f.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsumsplit2f.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsumsplit2f.f | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) |
gsumsplit2f.w | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) |
gsumsplit2f.i | ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) |
gsumsplit2f.u | ⊢ (𝜑 → 𝐴 = (𝐶 ∪ 𝐷)) |
Ref | Expression |
---|---|
gsumsplit2f | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ 𝐷 ↦ 𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumsplit2f.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumsplit2f.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
3 | gsumsplit2f.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | gsumsplit2f.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
5 | gsumsplit2f.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | gsumsplit2f.n | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
7 | gsumsplit2f.f | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
8 | eqid 2738 | . . . 4 ⊢ (𝑘 ∈ 𝐴 ↦ 𝑋) = (𝑘 ∈ 𝐴 ↦ 𝑋) | |
9 | 6, 7, 8 | fmptdf 6953 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋):𝐴⟶𝐵) |
10 | gsumsplit2f.w | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) | |
11 | gsumsplit2f.i | . . 3 ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) | |
12 | gsumsplit2f.u | . . 3 ⊢ (𝜑 → 𝐴 = (𝐶 ∪ 𝐷)) | |
13 | 1, 2, 3, 4, 5, 9, 10, 11, 12 | gsumsplit 19341 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((𝐺 Σg ((𝑘 ∈ 𝐴 ↦ 𝑋) ↾ 𝐶)) + (𝐺 Σg ((𝑘 ∈ 𝐴 ↦ 𝑋) ↾ 𝐷)))) |
14 | ssun1 4101 | . . . . . 6 ⊢ 𝐶 ⊆ (𝐶 ∪ 𝐷) | |
15 | 14, 12 | sseqtrrid 3969 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
16 | 15 | resmptd 5923 | . . . 4 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝑋) ↾ 𝐶) = (𝑘 ∈ 𝐶 ↦ 𝑋)) |
17 | 16 | oveq2d 7248 | . . 3 ⊢ (𝜑 → (𝐺 Σg ((𝑘 ∈ 𝐴 ↦ 𝑋) ↾ 𝐶)) = (𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑋))) |
18 | ssun2 4102 | . . . . . 6 ⊢ 𝐷 ⊆ (𝐶 ∪ 𝐷) | |
19 | 18, 12 | sseqtrrid 3969 | . . . . 5 ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
20 | 19 | resmptd 5923 | . . . 4 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝑋) ↾ 𝐷) = (𝑘 ∈ 𝐷 ↦ 𝑋)) |
21 | 20 | oveq2d 7248 | . . 3 ⊢ (𝜑 → (𝐺 Σg ((𝑘 ∈ 𝐴 ↦ 𝑋) ↾ 𝐷)) = (𝐺 Σg (𝑘 ∈ 𝐷 ↦ 𝑋))) |
22 | 17, 21 | oveq12d 7250 | . 2 ⊢ (𝜑 → ((𝐺 Σg ((𝑘 ∈ 𝐴 ↦ 𝑋) ↾ 𝐶)) + (𝐺 Σg ((𝑘 ∈ 𝐴 ↦ 𝑋) ↾ 𝐷))) = ((𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ 𝐷 ↦ 𝑋)))) |
23 | 13, 22 | eqtrd 2778 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ 𝐷 ↦ 𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 Ⅎwnf 1791 ∈ wcel 2111 ∪ cun 3879 ∩ cin 3880 ∅c0 4252 class class class wbr 5068 ↦ cmpt 5150 ↾ cres 5568 ‘cfv 6398 (class class class)co 7232 finSupp cfsupp 9010 Basecbs 16788 +gcplusg 16830 0gc0g 16972 Σg cgsu 16973 CMndccmn 19198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5194 ax-sep 5207 ax-nul 5214 ax-pow 5273 ax-pr 5337 ax-un 7542 ax-cnex 10810 ax-resscn 10811 ax-1cn 10812 ax-icn 10813 ax-addcl 10814 ax-addrcl 10815 ax-mulcl 10816 ax-mulrcl 10817 ax-mulcom 10818 ax-addass 10819 ax-mulass 10820 ax-distr 10821 ax-i2m1 10822 ax-1ne0 10823 ax-1rid 10824 ax-rnegex 10825 ax-rrecex 10826 ax-cnre 10827 ax-pre-lttri 10828 ax-pre-lttrn 10829 ax-pre-ltadd 10830 ax-pre-mulgt0 10831 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3423 df-sbc 3710 df-csb 3827 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-pss 3900 df-nul 4253 df-if 4455 df-pw 4530 df-sn 4557 df-pr 4559 df-tp 4561 df-op 4563 df-uni 4835 df-int 4875 df-iun 4921 df-iin 4922 df-br 5069 df-opab 5131 df-mpt 5151 df-tr 5177 df-id 5470 df-eprel 5475 df-po 5483 df-so 5484 df-fr 5524 df-se 5525 df-we 5526 df-xp 5572 df-rel 5573 df-cnv 5574 df-co 5575 df-dm 5576 df-rn 5577 df-res 5578 df-ima 5579 df-pred 6176 df-ord 6234 df-on 6235 df-lim 6236 df-suc 6237 df-iota 6356 df-fun 6400 df-fn 6401 df-f 6402 df-f1 6403 df-fo 6404 df-f1o 6405 df-fv 6406 df-isom 6407 df-riota 7189 df-ov 7235 df-oprab 7236 df-mpo 7237 df-of 7488 df-om 7664 df-1st 7780 df-2nd 7781 df-supp 7925 df-wrecs 8068 df-recs 8129 df-rdg 8167 df-1o 8223 df-er 8412 df-en 8648 df-dom 8649 df-sdom 8650 df-fin 8651 df-fsupp 9011 df-oi 9151 df-card 9580 df-pnf 10894 df-mnf 10895 df-xr 10896 df-ltxr 10897 df-le 10898 df-sub 11089 df-neg 11090 df-nn 11856 df-2 11918 df-n0 12116 df-z 12202 df-uz 12464 df-fz 13121 df-fzo 13264 df-seq 13602 df-hash 13925 df-sets 16745 df-slot 16763 df-ndx 16773 df-base 16789 df-ress 16813 df-plusg 16843 df-0g 16974 df-gsum 16975 df-mre 17117 df-mrc 17118 df-acs 17120 df-mgm 18142 df-sgrp 18191 df-mnd 18202 df-submnd 18247 df-cntz 18739 df-cmn 19200 |
This theorem is referenced by: gsumdifsndf 45079 |
Copyright terms: Public domain | W3C validator |