![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gsumsplit2f | Structured version Visualization version GIF version |
Description: Split a group sum into two parts. (Contributed by AV, 4-Sep-2019.) |
Ref | Expression |
---|---|
gsumsplit2f.n | ⊢ Ⅎ𝑘𝜑 |
gsumsplit2f.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumsplit2f.z | ⊢ 0 = (0g‘𝐺) |
gsumsplit2f.p | ⊢ + = (+g‘𝐺) |
gsumsplit2f.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsumsplit2f.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsumsplit2f.f | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) |
gsumsplit2f.w | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) |
gsumsplit2f.i | ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) |
gsumsplit2f.u | ⊢ (𝜑 → 𝐴 = (𝐶 ∪ 𝐷)) |
Ref | Expression |
---|---|
gsumsplit2f | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ 𝐷 ↦ 𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumsplit2f.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumsplit2f.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
3 | gsumsplit2f.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | gsumsplit2f.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
5 | gsumsplit2f.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | gsumsplit2f.n | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
7 | gsumsplit2f.f | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
8 | eqid 2727 | . . . 4 ⊢ (𝑘 ∈ 𝐴 ↦ 𝑋) = (𝑘 ∈ 𝐴 ↦ 𝑋) | |
9 | 6, 7, 8 | fmptdf 7121 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋):𝐴⟶𝐵) |
10 | gsumsplit2f.w | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) | |
11 | gsumsplit2f.i | . . 3 ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) | |
12 | gsumsplit2f.u | . . 3 ⊢ (𝜑 → 𝐴 = (𝐶 ∪ 𝐷)) | |
13 | 1, 2, 3, 4, 5, 9, 10, 11, 12 | gsumsplit 19867 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((𝐺 Σg ((𝑘 ∈ 𝐴 ↦ 𝑋) ↾ 𝐶)) + (𝐺 Σg ((𝑘 ∈ 𝐴 ↦ 𝑋) ↾ 𝐷)))) |
14 | ssun1 4168 | . . . . . 6 ⊢ 𝐶 ⊆ (𝐶 ∪ 𝐷) | |
15 | 14, 12 | sseqtrrid 4031 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
16 | 15 | resmptd 6038 | . . . 4 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝑋) ↾ 𝐶) = (𝑘 ∈ 𝐶 ↦ 𝑋)) |
17 | 16 | oveq2d 7430 | . . 3 ⊢ (𝜑 → (𝐺 Σg ((𝑘 ∈ 𝐴 ↦ 𝑋) ↾ 𝐶)) = (𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑋))) |
18 | ssun2 4169 | . . . . . 6 ⊢ 𝐷 ⊆ (𝐶 ∪ 𝐷) | |
19 | 18, 12 | sseqtrrid 4031 | . . . . 5 ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
20 | 19 | resmptd 6038 | . . . 4 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝑋) ↾ 𝐷) = (𝑘 ∈ 𝐷 ↦ 𝑋)) |
21 | 20 | oveq2d 7430 | . . 3 ⊢ (𝜑 → (𝐺 Σg ((𝑘 ∈ 𝐴 ↦ 𝑋) ↾ 𝐷)) = (𝐺 Σg (𝑘 ∈ 𝐷 ↦ 𝑋))) |
22 | 17, 21 | oveq12d 7432 | . 2 ⊢ (𝜑 → ((𝐺 Σg ((𝑘 ∈ 𝐴 ↦ 𝑋) ↾ 𝐶)) + (𝐺 Σg ((𝑘 ∈ 𝐴 ↦ 𝑋) ↾ 𝐷))) = ((𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ 𝐷 ↦ 𝑋)))) |
23 | 13, 22 | eqtrd 2767 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ 𝐷 ↦ 𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 Ⅎwnf 1778 ∈ wcel 2099 ∪ cun 3942 ∩ cin 3943 ∅c0 4318 class class class wbr 5142 ↦ cmpt 5225 ↾ cres 5674 ‘cfv 6542 (class class class)co 7414 finSupp cfsupp 9375 Basecbs 17165 +gcplusg 17218 0gc0g 17406 Σg cgsu 17407 CMndccmn 19719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7677 df-om 7863 df-1st 7985 df-2nd 7986 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-fsupp 9376 df-oi 9519 df-card 9948 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-nn 12229 df-2 12291 df-n0 12489 df-z 12575 df-uz 12839 df-fz 13503 df-fzo 13646 df-seq 13985 df-hash 14308 df-sets 17118 df-slot 17136 df-ndx 17148 df-base 17166 df-ress 17195 df-plusg 17231 df-0g 17408 df-gsum 17409 df-mre 17551 df-mrc 17552 df-acs 17554 df-mgm 18585 df-sgrp 18664 df-mnd 18680 df-submnd 18726 df-cntz 19252 df-cmn 19721 |
This theorem is referenced by: gsumdifsndf 47156 |
Copyright terms: Public domain | W3C validator |