Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumsplit2f Structured version   Visualization version   GIF version

Theorem gsumsplit2f 42712
Description: Split a group sum into two parts. (Contributed by AV, 4-Sep-2019.)
Hypotheses
Ref Expression
gsumsplit2f.n 𝑘𝜑
gsumsplit2f.b 𝐵 = (Base‘𝐺)
gsumsplit2f.z 0 = (0g𝐺)
gsumsplit2f.p + = (+g𝐺)
gsumsplit2f.g (𝜑𝐺 ∈ CMnd)
gsumsplit2f.a (𝜑𝐴𝑉)
gsumsplit2f.f ((𝜑𝑘𝐴) → 𝑋𝐵)
gsumsplit2f.w (𝜑 → (𝑘𝐴𝑋) finSupp 0 )
gsumsplit2f.i (𝜑 → (𝐶𝐷) = ∅)
gsumsplit2f.u (𝜑𝐴 = (𝐶𝐷))
Assertion
Ref Expression
gsumsplit2f (𝜑 → (𝐺 Σg (𝑘𝐴𝑋)) = ((𝐺 Σg (𝑘𝐶𝑋)) + (𝐺 Σg (𝑘𝐷𝑋))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝐷,𝑘
Allowed substitution hints:   𝜑(𝑘)   + (𝑘)   𝐺(𝑘)   𝑉(𝑘)   𝑋(𝑘)   0 (𝑘)

Proof of Theorem gsumsplit2f
StepHypRef Expression
1 gsumsplit2f.b . . 3 𝐵 = (Base‘𝐺)
2 gsumsplit2f.z . . 3 0 = (0g𝐺)
3 gsumsplit2f.p . . 3 + = (+g𝐺)
4 gsumsplit2f.g . . 3 (𝜑𝐺 ∈ CMnd)
5 gsumsplit2f.a . . 3 (𝜑𝐴𝑉)
6 gsumsplit2f.n . . . 4 𝑘𝜑
7 gsumsplit2f.f . . . 4 ((𝜑𝑘𝐴) → 𝑋𝐵)
8 eqid 2813 . . . 4 (𝑘𝐴𝑋) = (𝑘𝐴𝑋)
96, 7, 8fmptdf 6612 . . 3 (𝜑 → (𝑘𝐴𝑋):𝐴𝐵)
10 gsumsplit2f.w . . 3 (𝜑 → (𝑘𝐴𝑋) finSupp 0 )
11 gsumsplit2f.i . . 3 (𝜑 → (𝐶𝐷) = ∅)
12 gsumsplit2f.u . . 3 (𝜑𝐴 = (𝐶𝐷))
131, 2, 3, 4, 5, 9, 10, 11, 12gsumsplit 18532 . 2 (𝜑 → (𝐺 Σg (𝑘𝐴𝑋)) = ((𝐺 Σg ((𝑘𝐴𝑋) ↾ 𝐶)) + (𝐺 Σg ((𝑘𝐴𝑋) ↾ 𝐷))))
14 ssun1 3982 . . . . . 6 𝐶 ⊆ (𝐶𝐷)
1514, 12syl5sseqr 3858 . . . . 5 (𝜑𝐶𝐴)
1615resmptd 5664 . . . 4 (𝜑 → ((𝑘𝐴𝑋) ↾ 𝐶) = (𝑘𝐶𝑋))
1716oveq2d 6893 . . 3 (𝜑 → (𝐺 Σg ((𝑘𝐴𝑋) ↾ 𝐶)) = (𝐺 Σg (𝑘𝐶𝑋)))
18 ssun2 3983 . . . . . 6 𝐷 ⊆ (𝐶𝐷)
1918, 12syl5sseqr 3858 . . . . 5 (𝜑𝐷𝐴)
2019resmptd 5664 . . . 4 (𝜑 → ((𝑘𝐴𝑋) ↾ 𝐷) = (𝑘𝐷𝑋))
2120oveq2d 6893 . . 3 (𝜑 → (𝐺 Σg ((𝑘𝐴𝑋) ↾ 𝐷)) = (𝐺 Σg (𝑘𝐷𝑋)))
2217, 21oveq12d 6895 . 2 (𝜑 → ((𝐺 Σg ((𝑘𝐴𝑋) ↾ 𝐶)) + (𝐺 Σg ((𝑘𝐴𝑋) ↾ 𝐷))) = ((𝐺 Σg (𝑘𝐶𝑋)) + (𝐺 Σg (𝑘𝐷𝑋))))
2313, 22eqtrd 2847 1 (𝜑 → (𝐺 Σg (𝑘𝐴𝑋)) = ((𝐺 Σg (𝑘𝐶𝑋)) + (𝐺 Σg (𝑘𝐷𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1637  wnf 1863  wcel 2157  cun 3774  cin 3775  c0 4123   class class class wbr 4851  cmpt 4930  cres 5320  cfv 6104  (class class class)co 6877   finSupp cfsupp 8517  Basecbs 16071  +gcplusg 16156  0gc0g 16308   Σg cgsu 16309  CMndccmn 18397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-rep 4971  ax-sep 4982  ax-nul 4990  ax-pow 5042  ax-pr 5103  ax-un 7182  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2638  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ne 2986  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3400  df-sbc 3641  df-csb 3736  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-pss 3792  df-nul 4124  df-if 4287  df-pw 4360  df-sn 4378  df-pr 4380  df-tp 4382  df-op 4384  df-uni 4638  df-int 4677  df-iun 4721  df-iin 4722  df-br 4852  df-opab 4914  df-mpt 4931  df-tr 4954  df-id 5226  df-eprel 5231  df-po 5239  df-so 5240  df-fr 5277  df-se 5278  df-we 5279  df-xp 5324  df-rel 5325  df-cnv 5326  df-co 5327  df-dm 5328  df-rn 5329  df-res 5330  df-ima 5331  df-pred 5900  df-ord 5946  df-on 5947  df-lim 5948  df-suc 5949  df-iota 6067  df-fun 6106  df-fn 6107  df-f 6108  df-f1 6109  df-fo 6110  df-f1o 6111  df-fv 6112  df-isom 6113  df-riota 6838  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-of 7130  df-om 7299  df-1st 7401  df-2nd 7402  df-supp 7533  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-fsupp 8518  df-oi 8657  df-card 9051  df-pnf 10364  df-mnf 10365  df-xr 10366  df-ltxr 10367  df-le 10368  df-sub 10556  df-neg 10557  df-nn 11309  df-2 11367  df-n0 11563  df-z 11647  df-uz 11908  df-fz 12553  df-fzo 12693  df-seq 13028  df-hash 13341  df-ndx 16074  df-slot 16075  df-base 16077  df-sets 16078  df-ress 16079  df-plusg 16169  df-0g 16310  df-gsum 16311  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-cntz 17954  df-cmn 18399
This theorem is referenced by:  gsumdifsndf  42713
  Copyright terms: Public domain W3C validator