| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gsumsplit2f | Structured version Visualization version GIF version | ||
| Description: Split a group sum into two parts. (Contributed by AV, 4-Sep-2019.) |
| Ref | Expression |
|---|---|
| gsumsplit2f.n | ⊢ Ⅎ𝑘𝜑 |
| gsumsplit2f.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsumsplit2f.z | ⊢ 0 = (0g‘𝐺) |
| gsumsplit2f.p | ⊢ + = (+g‘𝐺) |
| gsumsplit2f.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsumsplit2f.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| gsumsplit2f.f | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) |
| gsumsplit2f.w | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) |
| gsumsplit2f.i | ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) |
| gsumsplit2f.u | ⊢ (𝜑 → 𝐴 = (𝐶 ∪ 𝐷)) |
| Ref | Expression |
|---|---|
| gsumsplit2f | ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ 𝐷 ↦ 𝑋)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumsplit2f.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsumsplit2f.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 3 | gsumsplit2f.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | gsumsplit2f.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 5 | gsumsplit2f.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 6 | gsumsplit2f.n | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
| 7 | gsumsplit2f.f | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
| 8 | eqid 2729 | . . . 4 ⊢ (𝑘 ∈ 𝐴 ↦ 𝑋) = (𝑘 ∈ 𝐴 ↦ 𝑋) | |
| 9 | 6, 7, 8 | fmptdf 7089 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋):𝐴⟶𝐵) |
| 10 | gsumsplit2f.w | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) | |
| 11 | gsumsplit2f.i | . . 3 ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) | |
| 12 | gsumsplit2f.u | . . 3 ⊢ (𝜑 → 𝐴 = (𝐶 ∪ 𝐷)) | |
| 13 | 1, 2, 3, 4, 5, 9, 10, 11, 12 | gsumsplit 19858 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((𝐺 Σg ((𝑘 ∈ 𝐴 ↦ 𝑋) ↾ 𝐶)) + (𝐺 Σg ((𝑘 ∈ 𝐴 ↦ 𝑋) ↾ 𝐷)))) |
| 14 | ssun1 4141 | . . . . . 6 ⊢ 𝐶 ⊆ (𝐶 ∪ 𝐷) | |
| 15 | 14, 12 | sseqtrrid 3990 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| 16 | 15 | resmptd 6011 | . . . 4 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝑋) ↾ 𝐶) = (𝑘 ∈ 𝐶 ↦ 𝑋)) |
| 17 | 16 | oveq2d 7403 | . . 3 ⊢ (𝜑 → (𝐺 Σg ((𝑘 ∈ 𝐴 ↦ 𝑋) ↾ 𝐶)) = (𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑋))) |
| 18 | ssun2 4142 | . . . . . 6 ⊢ 𝐷 ⊆ (𝐶 ∪ 𝐷) | |
| 19 | 18, 12 | sseqtrrid 3990 | . . . . 5 ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
| 20 | 19 | resmptd 6011 | . . . 4 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝑋) ↾ 𝐷) = (𝑘 ∈ 𝐷 ↦ 𝑋)) |
| 21 | 20 | oveq2d 7403 | . . 3 ⊢ (𝜑 → (𝐺 Σg ((𝑘 ∈ 𝐴 ↦ 𝑋) ↾ 𝐷)) = (𝐺 Σg (𝑘 ∈ 𝐷 ↦ 𝑋))) |
| 22 | 17, 21 | oveq12d 7405 | . 2 ⊢ (𝜑 → ((𝐺 Σg ((𝑘 ∈ 𝐴 ↦ 𝑋) ↾ 𝐶)) + (𝐺 Σg ((𝑘 ∈ 𝐴 ↦ 𝑋) ↾ 𝐷))) = ((𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ 𝐷 ↦ 𝑋)))) |
| 23 | 13, 22 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((𝐺 Σg (𝑘 ∈ 𝐶 ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ 𝐷 ↦ 𝑋)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ∪ cun 3912 ∩ cin 3913 ∅c0 4296 class class class wbr 5107 ↦ cmpt 5188 ↾ cres 5640 ‘cfv 6511 (class class class)co 7387 finSupp cfsupp 9312 Basecbs 17179 +gcplusg 17220 0gc0g 17402 Σg cgsu 17403 CMndccmn 19710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-seq 13967 df-hash 14296 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-0g 17404 df-gsum 17405 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-cntz 19249 df-cmn 19712 |
| This theorem is referenced by: gsumdifsndf 48166 |
| Copyright terms: Public domain | W3C validator |