MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzp1nel Structured version   Visualization version   GIF version

Theorem fzp1nel 13581
Description: One plus the upper bound of a finite set of integers is not a member of that set. (Contributed by Scott Fenton, 16-Dec-2017.)
Assertion
Ref Expression
fzp1nel ¬ (𝑁 + 1) ∈ (𝑀...𝑁)

Proof of Theorem fzp1nel
StepHypRef Expression
1 zre 12558 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2 ltp1 12050 . . . . . 6 (𝑁 ∈ ℝ → 𝑁 < (𝑁 + 1))
3 id 22 . . . . . . 7 (𝑁 ∈ ℝ → 𝑁 ∈ ℝ)
4 peano2re 11383 . . . . . . 7 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
53, 4ltnled 11357 . . . . . 6 (𝑁 ∈ ℝ → (𝑁 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑁))
62, 5mpbid 231 . . . . 5 (𝑁 ∈ ℝ → ¬ (𝑁 + 1) ≤ 𝑁)
71, 6syl 17 . . . 4 (𝑁 ∈ ℤ → ¬ (𝑁 + 1) ≤ 𝑁)
87intnand 489 . . 3 (𝑁 ∈ ℤ → ¬ (𝑀 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≤ 𝑁))
983ad2ant2 1134 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → ¬ (𝑀 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≤ 𝑁))
10 elfz2 13487 . . . 4 ((𝑁 + 1) ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) ∧ (𝑀 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≤ 𝑁)))
1110notbii 319 . . 3 (¬ (𝑁 + 1) ∈ (𝑀...𝑁) ↔ ¬ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) ∧ (𝑀 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≤ 𝑁)))
12 imnan 400 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → ¬ (𝑀 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≤ 𝑁)) ↔ ¬ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) ∧ (𝑀 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≤ 𝑁)))
1311, 12bitr4i 277 . 2 (¬ (𝑁 + 1) ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → ¬ (𝑀 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≤ 𝑁)))
149, 13mpbir 230 1 ¬ (𝑁 + 1) ∈ (𝑀...𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087  wcel 2106   class class class wbr 5147  (class class class)co 7405  cr 11105  1c1 11107   + caddc 11109   < clt 11244  cle 11245  cz 12554  ...cfz 13480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-z 12555  df-fz 13481
This theorem is referenced by:  fprodm1  15907  gsumzaddlem  19783  wlkp1lem1  28919  wlkp1lem5  28923  fwddifnp1  35125  caratheodorylem1  45228
  Copyright terms: Public domain W3C validator