MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzp1nel Structured version   Visualization version   GIF version

Theorem fzp1nel 12841
Description: One plus the upper bound of a finite set of integers is not a member of that set. (Contributed by Scott Fenton, 16-Dec-2017.)
Assertion
Ref Expression
fzp1nel ¬ (𝑁 + 1) ∈ (𝑀...𝑁)

Proof of Theorem fzp1nel
StepHypRef Expression
1 zre 11833 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2 ltp1 11328 . . . . . 6 (𝑁 ∈ ℝ → 𝑁 < (𝑁 + 1))
3 id 22 . . . . . . 7 (𝑁 ∈ ℝ → 𝑁 ∈ ℝ)
4 peano2re 10660 . . . . . . 7 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
53, 4ltnled 10634 . . . . . 6 (𝑁 ∈ ℝ → (𝑁 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑁))
62, 5mpbid 233 . . . . 5 (𝑁 ∈ ℝ → ¬ (𝑁 + 1) ≤ 𝑁)
71, 6syl 17 . . . 4 (𝑁 ∈ ℤ → ¬ (𝑁 + 1) ≤ 𝑁)
87intnand 489 . . 3 (𝑁 ∈ ℤ → ¬ (𝑀 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≤ 𝑁))
983ad2ant2 1127 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → ¬ (𝑀 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≤ 𝑁))
10 elfz2 12749 . . . 4 ((𝑁 + 1) ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) ∧ (𝑀 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≤ 𝑁)))
1110notbii 321 . . 3 (¬ (𝑁 + 1) ∈ (𝑀...𝑁) ↔ ¬ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) ∧ (𝑀 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≤ 𝑁)))
12 imnan 400 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → ¬ (𝑀 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≤ 𝑁)) ↔ ¬ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) ∧ (𝑀 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≤ 𝑁)))
1311, 12bitr4i 279 . 2 (¬ (𝑁 + 1) ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → ¬ (𝑀 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≤ 𝑁)))
149, 13mpbir 232 1 ¬ (𝑁 + 1) ∈ (𝑀...𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1080  wcel 2081   class class class wbr 4962  (class class class)co 7016  cr 10382  1c1 10384   + caddc 10386   < clt 10521  cle 10522  cz 11829  ...cfz 12742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-po 5362  df-so 5363  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-1st 7545  df-2nd 7546  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-z 11830  df-fz 12743
This theorem is referenced by:  fprodm1  15154  gsumzaddlem  18761  wlkp1lem1  27140  wlkp1lem5  27144  fwddifnp1  33235  caratheodorylem1  42350
  Copyright terms: Public domain W3C validator