MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkp1lem1 Structured version   Visualization version   GIF version

Theorem wlkp1lem1 27943
Description: Lemma for wlkp1 27951. (Contributed by AV, 6-Mar-2021.)
Hypotheses
Ref Expression
wlkp1.v 𝑉 = (Vtx‘𝐺)
wlkp1.i 𝐼 = (iEdg‘𝐺)
wlkp1.f (𝜑 → Fun 𝐼)
wlkp1.a (𝜑𝐼 ∈ Fin)
wlkp1.b (𝜑𝐵𝑊)
wlkp1.c (𝜑𝐶𝑉)
wlkp1.d (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
wlkp1.w (𝜑𝐹(Walks‘𝐺)𝑃)
wlkp1.n 𝑁 = (♯‘𝐹)
Assertion
Ref Expression
wlkp1lem1 (𝜑 → ¬ (𝑁 + 1) ∈ dom 𝑃)

Proof of Theorem wlkp1lem1
StepHypRef Expression
1 wlkp1.w . 2 (𝜑𝐹(Walks‘𝐺)𝑃)
2 wlkcl 27885 . . 3 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
3 wlkp1.v . . . 4 𝑉 = (Vtx‘𝐺)
43wlkp 27886 . . 3 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶𝑉)
52, 4jca 511 . 2 (𝐹(Walks‘𝐺)𝑃 → ((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶𝑉))
6 fzp1nel 13269 . . . . . 6 ¬ ((♯‘𝐹) + 1) ∈ (0...(♯‘𝐹))
76a1i 11 . . . . 5 ((♯‘𝐹) ∈ ℕ0 → ¬ ((♯‘𝐹) + 1) ∈ (0...(♯‘𝐹)))
8 wlkp1.n . . . . . . 7 𝑁 = (♯‘𝐹)
98oveq1i 7265 . . . . . 6 (𝑁 + 1) = ((♯‘𝐹) + 1)
109eleq1i 2829 . . . . 5 ((𝑁 + 1) ∈ (0...(♯‘𝐹)) ↔ ((♯‘𝐹) + 1) ∈ (0...(♯‘𝐹)))
117, 10sylnibr 328 . . . 4 ((♯‘𝐹) ∈ ℕ0 → ¬ (𝑁 + 1) ∈ (0...(♯‘𝐹)))
12 eleq2 2827 . . . . 5 (dom 𝑃 = (0...(♯‘𝐹)) → ((𝑁 + 1) ∈ dom 𝑃 ↔ (𝑁 + 1) ∈ (0...(♯‘𝐹))))
1312notbid 317 . . . 4 (dom 𝑃 = (0...(♯‘𝐹)) → (¬ (𝑁 + 1) ∈ dom 𝑃 ↔ ¬ (𝑁 + 1) ∈ (0...(♯‘𝐹))))
1411, 13syl5ibrcom 246 . . 3 ((♯‘𝐹) ∈ ℕ0 → (dom 𝑃 = (0...(♯‘𝐹)) → ¬ (𝑁 + 1) ∈ dom 𝑃))
15 fdm 6593 . . 3 (𝑃:(0...(♯‘𝐹))⟶𝑉 → dom 𝑃 = (0...(♯‘𝐹)))
1614, 15impel 505 . 2 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶𝑉) → ¬ (𝑁 + 1) ∈ dom 𝑃)
171, 5, 163syl 18 1 (𝜑 → ¬ (𝑁 + 1) ∈ dom 𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108   class class class wbr 5070  dom cdm 5580  Fun wfun 6412  wf 6414  cfv 6418  (class class class)co 7255  Fincfn 8691  0cc0 10802  1c1 10803   + caddc 10805  0cn0 12163  ...cfz 13168  chash 13972  Vtxcvtx 27269  iEdgciedg 27270  Walkscwlks 27866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-wlks 27869
This theorem is referenced by:  wlkp1lem7  27949  wlkp1lem8  27950  eupth2eucrct  28482
  Copyright terms: Public domain W3C validator