![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlkp1lem1 | Structured version Visualization version GIF version |
Description: Lemma for wlkp1 29725. (Contributed by AV, 6-Mar-2021.) |
Ref | Expression |
---|---|
wlkp1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
wlkp1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
wlkp1.f | ⊢ (𝜑 → Fun 𝐼) |
wlkp1.a | ⊢ (𝜑 → 𝐼 ∈ Fin) |
wlkp1.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
wlkp1.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
wlkp1.d | ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) |
wlkp1.w | ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
wlkp1.n | ⊢ 𝑁 = (♯‘𝐹) |
Ref | Expression |
---|---|
wlkp1lem1 | ⊢ (𝜑 → ¬ (𝑁 + 1) ∈ dom 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkp1.w | . 2 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) | |
2 | wlkcl 29659 | . . 3 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) | |
3 | wlkp1.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | 3 | wlkp 29660 | . . 3 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶𝑉) |
5 | 2, 4 | jca 511 | . 2 ⊢ (𝐹(Walks‘𝐺)𝑃 → ((♯‘𝐹) ∈ ℕ0 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) |
6 | fzp1nel 13657 | . . . . . 6 ⊢ ¬ ((♯‘𝐹) + 1) ∈ (0...(♯‘𝐹)) | |
7 | 6 | a1i 11 | . . . . 5 ⊢ ((♯‘𝐹) ∈ ℕ0 → ¬ ((♯‘𝐹) + 1) ∈ (0...(♯‘𝐹))) |
8 | wlkp1.n | . . . . . . 7 ⊢ 𝑁 = (♯‘𝐹) | |
9 | 8 | oveq1i 7448 | . . . . . 6 ⊢ (𝑁 + 1) = ((♯‘𝐹) + 1) |
10 | 9 | eleq1i 2832 | . . . . 5 ⊢ ((𝑁 + 1) ∈ (0...(♯‘𝐹)) ↔ ((♯‘𝐹) + 1) ∈ (0...(♯‘𝐹))) |
11 | 7, 10 | sylnibr 329 | . . . 4 ⊢ ((♯‘𝐹) ∈ ℕ0 → ¬ (𝑁 + 1) ∈ (0...(♯‘𝐹))) |
12 | eleq2 2830 | . . . . 5 ⊢ (dom 𝑃 = (0...(♯‘𝐹)) → ((𝑁 + 1) ∈ dom 𝑃 ↔ (𝑁 + 1) ∈ (0...(♯‘𝐹)))) | |
13 | 12 | notbid 318 | . . . 4 ⊢ (dom 𝑃 = (0...(♯‘𝐹)) → (¬ (𝑁 + 1) ∈ dom 𝑃 ↔ ¬ (𝑁 + 1) ∈ (0...(♯‘𝐹)))) |
14 | 11, 13 | syl5ibrcom 247 | . . 3 ⊢ ((♯‘𝐹) ∈ ℕ0 → (dom 𝑃 = (0...(♯‘𝐹)) → ¬ (𝑁 + 1) ∈ dom 𝑃)) |
15 | fdm 6753 | . . 3 ⊢ (𝑃:(0...(♯‘𝐹))⟶𝑉 → dom 𝑃 = (0...(♯‘𝐹))) | |
16 | 14, 15 | impel 505 | . 2 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) → ¬ (𝑁 + 1) ∈ dom 𝑃) |
17 | 1, 5, 16 | 3syl 18 | 1 ⊢ (𝜑 → ¬ (𝑁 + 1) ∈ dom 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5151 dom cdm 5693 Fun wfun 6563 ⟶wf 6565 ‘cfv 6569 (class class class)co 7438 Fincfn 8993 0cc0 11162 1c1 11163 + caddc 11165 ℕ0cn0 12533 ...cfz 13553 ♯chash 14375 Vtxcvtx 29039 iEdgciedg 29040 Walkscwlks 29640 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ifp 1064 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-er 8753 df-map 8876 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-card 9986 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-n0 12534 df-z 12621 df-uz 12886 df-fz 13554 df-fzo 13701 df-hash 14376 df-word 14559 df-wlks 29643 |
This theorem is referenced by: wlkp1lem7 29723 wlkp1lem8 29724 eupth2eucrct 30262 |
Copyright terms: Public domain | W3C validator |