MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkp1lem1 Structured version   Visualization version   GIF version

Theorem wlkp1lem1 27463
Description: Lemma for wlkp1 27471. (Contributed by AV, 6-Mar-2021.)
Hypotheses
Ref Expression
wlkp1.v 𝑉 = (Vtx‘𝐺)
wlkp1.i 𝐼 = (iEdg‘𝐺)
wlkp1.f (𝜑 → Fun 𝐼)
wlkp1.a (𝜑𝐼 ∈ Fin)
wlkp1.b (𝜑𝐵𝑊)
wlkp1.c (𝜑𝐶𝑉)
wlkp1.d (𝜑 → ¬ 𝐵 ∈ dom 𝐼)
wlkp1.w (𝜑𝐹(Walks‘𝐺)𝑃)
wlkp1.n 𝑁 = (♯‘𝐹)
Assertion
Ref Expression
wlkp1lem1 (𝜑 → ¬ (𝑁 + 1) ∈ dom 𝑃)

Proof of Theorem wlkp1lem1
StepHypRef Expression
1 wlkp1.w . 2 (𝜑𝐹(Walks‘𝐺)𝑃)
2 wlkcl 27405 . . 3 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
3 wlkp1.v . . . 4 𝑉 = (Vtx‘𝐺)
43wlkp 27406 . . 3 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶𝑉)
52, 4jca 515 . 2 (𝐹(Walks‘𝐺)𝑃 → ((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶𝑉))
6 fzp1nel 12986 . . . . . 6 ¬ ((♯‘𝐹) + 1) ∈ (0...(♯‘𝐹))
76a1i 11 . . . . 5 ((♯‘𝐹) ∈ ℕ0 → ¬ ((♯‘𝐹) + 1) ∈ (0...(♯‘𝐹)))
8 wlkp1.n . . . . . . 7 𝑁 = (♯‘𝐹)
98oveq1i 7145 . . . . . 6 (𝑁 + 1) = ((♯‘𝐹) + 1)
109eleq1i 2880 . . . . 5 ((𝑁 + 1) ∈ (0...(♯‘𝐹)) ↔ ((♯‘𝐹) + 1) ∈ (0...(♯‘𝐹)))
117, 10sylnibr 332 . . . 4 ((♯‘𝐹) ∈ ℕ0 → ¬ (𝑁 + 1) ∈ (0...(♯‘𝐹)))
12 eleq2 2878 . . . . 5 (dom 𝑃 = (0...(♯‘𝐹)) → ((𝑁 + 1) ∈ dom 𝑃 ↔ (𝑁 + 1) ∈ (0...(♯‘𝐹))))
1312notbid 321 . . . 4 (dom 𝑃 = (0...(♯‘𝐹)) → (¬ (𝑁 + 1) ∈ dom 𝑃 ↔ ¬ (𝑁 + 1) ∈ (0...(♯‘𝐹))))
1411, 13syl5ibrcom 250 . . 3 ((♯‘𝐹) ∈ ℕ0 → (dom 𝑃 = (0...(♯‘𝐹)) → ¬ (𝑁 + 1) ∈ dom 𝑃))
15 fdm 6495 . . 3 (𝑃:(0...(♯‘𝐹))⟶𝑉 → dom 𝑃 = (0...(♯‘𝐹)))
1614, 15impel 509 . 2 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶𝑉) → ¬ (𝑁 + 1) ∈ dom 𝑃)
171, 5, 163syl 18 1 (𝜑 → ¬ (𝑁 + 1) ∈ dom 𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2111   class class class wbr 5030  dom cdm 5519  Fun wfun 6318  wf 6320  cfv 6324  (class class class)co 7135  Fincfn 8492  0cc0 10526  1c1 10527   + caddc 10529  0cn0 11885  ...cfz 12885  chash 13686  Vtxcvtx 26789  iEdgciedg 26790  Walkscwlks 27386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-wlks 27389
This theorem is referenced by:  wlkp1lem7  27469  wlkp1lem8  27470  eupth2eucrct  28002
  Copyright terms: Public domain W3C validator