| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wlkp1lem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for wlkp1 29616. (Contributed by AV, 6-Mar-2021.) |
| Ref | Expression |
|---|---|
| wlkp1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| wlkp1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| wlkp1.f | ⊢ (𝜑 → Fun 𝐼) |
| wlkp1.a | ⊢ (𝜑 → 𝐼 ∈ Fin) |
| wlkp1.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| wlkp1.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| wlkp1.d | ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) |
| wlkp1.w | ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
| wlkp1.n | ⊢ 𝑁 = (♯‘𝐹) |
| Ref | Expression |
|---|---|
| wlkp1lem1 | ⊢ (𝜑 → ¬ (𝑁 + 1) ∈ dom 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkp1.w | . 2 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) | |
| 2 | wlkcl 29550 | . . 3 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) | |
| 3 | wlkp1.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 4 | 3 | wlkp 29551 | . . 3 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶𝑉) |
| 5 | 2, 4 | jca 511 | . 2 ⊢ (𝐹(Walks‘𝐺)𝑃 → ((♯‘𝐹) ∈ ℕ0 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) |
| 6 | fzp1nel 13585 | . . . . . 6 ⊢ ¬ ((♯‘𝐹) + 1) ∈ (0...(♯‘𝐹)) | |
| 7 | 6 | a1i 11 | . . . . 5 ⊢ ((♯‘𝐹) ∈ ℕ0 → ¬ ((♯‘𝐹) + 1) ∈ (0...(♯‘𝐹))) |
| 8 | wlkp1.n | . . . . . . 7 ⊢ 𝑁 = (♯‘𝐹) | |
| 9 | 8 | oveq1i 7404 | . . . . . 6 ⊢ (𝑁 + 1) = ((♯‘𝐹) + 1) |
| 10 | 9 | eleq1i 2820 | . . . . 5 ⊢ ((𝑁 + 1) ∈ (0...(♯‘𝐹)) ↔ ((♯‘𝐹) + 1) ∈ (0...(♯‘𝐹))) |
| 11 | 7, 10 | sylnibr 329 | . . . 4 ⊢ ((♯‘𝐹) ∈ ℕ0 → ¬ (𝑁 + 1) ∈ (0...(♯‘𝐹))) |
| 12 | eleq2 2818 | . . . . 5 ⊢ (dom 𝑃 = (0...(♯‘𝐹)) → ((𝑁 + 1) ∈ dom 𝑃 ↔ (𝑁 + 1) ∈ (0...(♯‘𝐹)))) | |
| 13 | 12 | notbid 318 | . . . 4 ⊢ (dom 𝑃 = (0...(♯‘𝐹)) → (¬ (𝑁 + 1) ∈ dom 𝑃 ↔ ¬ (𝑁 + 1) ∈ (0...(♯‘𝐹)))) |
| 14 | 11, 13 | syl5ibrcom 247 | . . 3 ⊢ ((♯‘𝐹) ∈ ℕ0 → (dom 𝑃 = (0...(♯‘𝐹)) → ¬ (𝑁 + 1) ∈ dom 𝑃)) |
| 15 | fdm 6704 | . . 3 ⊢ (𝑃:(0...(♯‘𝐹))⟶𝑉 → dom 𝑃 = (0...(♯‘𝐹))) | |
| 16 | 14, 15 | impel 505 | . 2 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) → ¬ (𝑁 + 1) ∈ dom 𝑃) |
| 17 | 1, 5, 16 | 3syl 18 | 1 ⊢ (𝜑 → ¬ (𝑁 + 1) ∈ dom 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5115 dom cdm 5646 Fun wfun 6513 ⟶wf 6515 ‘cfv 6519 (class class class)co 7394 Fincfn 8922 0cc0 11086 1c1 11087 + caddc 11089 ℕ0cn0 12458 ...cfz 13481 ♯chash 14305 Vtxcvtx 28930 iEdgciedg 28931 Walkscwlks 29531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-er 8682 df-map 8805 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-card 9910 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-n0 12459 df-z 12546 df-uz 12810 df-fz 13482 df-fzo 13629 df-hash 14306 df-word 14489 df-wlks 29534 |
| This theorem is referenced by: wlkp1lem7 29614 wlkp1lem8 29615 eupth2eucrct 30153 |
| Copyright terms: Public domain | W3C validator |