![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlkp1lem1 | Structured version Visualization version GIF version |
Description: Lemma for wlkp1 29615. (Contributed by AV, 6-Mar-2021.) |
Ref | Expression |
---|---|
wlkp1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
wlkp1.i | ⊢ 𝐼 = (iEdg‘𝐺) |
wlkp1.f | ⊢ (𝜑 → Fun 𝐼) |
wlkp1.a | ⊢ (𝜑 → 𝐼 ∈ Fin) |
wlkp1.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
wlkp1.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
wlkp1.d | ⊢ (𝜑 → ¬ 𝐵 ∈ dom 𝐼) |
wlkp1.w | ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
wlkp1.n | ⊢ 𝑁 = (♯‘𝐹) |
Ref | Expression |
---|---|
wlkp1lem1 | ⊢ (𝜑 → ¬ (𝑁 + 1) ∈ dom 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wlkp1.w | . 2 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) | |
2 | wlkcl 29549 | . . 3 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) | |
3 | wlkp1.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | 3 | wlkp 29550 | . . 3 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶𝑉) |
5 | 2, 4 | jca 510 | . 2 ⊢ (𝐹(Walks‘𝐺)𝑃 → ((♯‘𝐹) ∈ ℕ0 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) |
6 | fzp1nel 13633 | . . . . . 6 ⊢ ¬ ((♯‘𝐹) + 1) ∈ (0...(♯‘𝐹)) | |
7 | 6 | a1i 11 | . . . . 5 ⊢ ((♯‘𝐹) ∈ ℕ0 → ¬ ((♯‘𝐹) + 1) ∈ (0...(♯‘𝐹))) |
8 | wlkp1.n | . . . . . . 7 ⊢ 𝑁 = (♯‘𝐹) | |
9 | 8 | oveq1i 7426 | . . . . . 6 ⊢ (𝑁 + 1) = ((♯‘𝐹) + 1) |
10 | 9 | eleq1i 2817 | . . . . 5 ⊢ ((𝑁 + 1) ∈ (0...(♯‘𝐹)) ↔ ((♯‘𝐹) + 1) ∈ (0...(♯‘𝐹))) |
11 | 7, 10 | sylnibr 328 | . . . 4 ⊢ ((♯‘𝐹) ∈ ℕ0 → ¬ (𝑁 + 1) ∈ (0...(♯‘𝐹))) |
12 | eleq2 2815 | . . . . 5 ⊢ (dom 𝑃 = (0...(♯‘𝐹)) → ((𝑁 + 1) ∈ dom 𝑃 ↔ (𝑁 + 1) ∈ (0...(♯‘𝐹)))) | |
13 | 12 | notbid 317 | . . . 4 ⊢ (dom 𝑃 = (0...(♯‘𝐹)) → (¬ (𝑁 + 1) ∈ dom 𝑃 ↔ ¬ (𝑁 + 1) ∈ (0...(♯‘𝐹)))) |
14 | 11, 13 | syl5ibrcom 246 | . . 3 ⊢ ((♯‘𝐹) ∈ ℕ0 → (dom 𝑃 = (0...(♯‘𝐹)) → ¬ (𝑁 + 1) ∈ dom 𝑃)) |
15 | fdm 6729 | . . 3 ⊢ (𝑃:(0...(♯‘𝐹))⟶𝑉 → dom 𝑃 = (0...(♯‘𝐹))) | |
16 | 14, 15 | impel 504 | . 2 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) → ¬ (𝑁 + 1) ∈ dom 𝑃) |
17 | 1, 5, 16 | 3syl 18 | 1 ⊢ (𝜑 → ¬ (𝑁 + 1) ∈ dom 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 class class class wbr 5145 dom cdm 5674 Fun wfun 6540 ⟶wf 6542 ‘cfv 6546 (class class class)co 7416 Fincfn 8966 0cc0 11149 1c1 11150 + caddc 11152 ℕ0cn0 12518 ...cfz 13532 ♯chash 14342 Vtxcvtx 28929 iEdgciedg 28930 Walkscwlks 29530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ifp 1061 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8726 df-map 8849 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-card 9975 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-nn 12259 df-n0 12519 df-z 12605 df-uz 12869 df-fz 13533 df-fzo 13676 df-hash 14343 df-word 14518 df-wlks 29533 |
This theorem is referenced by: wlkp1lem7 29613 wlkp1lem8 29614 eupth2eucrct 30147 |
Copyright terms: Public domain | W3C validator |