![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzpred | Structured version Visualization version GIF version |
Description: Join a predecessor to the beginning of a finite set of sequential integers. (Contributed by AV, 24-Aug-2019.) |
Ref | Expression |
---|---|
fzpred | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) = ({𝑀} ∪ ((𝑀 + 1)...𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzel2 12057 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
2 | uzid 12067 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
3 | peano2uz 12109 | . . . 4 ⊢ (𝑀 ∈ (ℤ≥‘𝑀) → (𝑀 + 1) ∈ (ℤ≥‘𝑀)) | |
4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 + 1) ∈ (ℤ≥‘𝑀)) |
5 | fzsplit2 12742 | . . 3 ⊢ (((𝑀 + 1) ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → (𝑀...𝑁) = ((𝑀...𝑀) ∪ ((𝑀 + 1)...𝑁))) | |
6 | 4, 5 | mpancom 675 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) = ((𝑀...𝑀) ∪ ((𝑀 + 1)...𝑁))) |
7 | fzsn 12759 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀}) | |
8 | 1, 7 | syl 17 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑀) = {𝑀}) |
9 | 8 | uneq1d 4021 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑀...𝑀) ∪ ((𝑀 + 1)...𝑁)) = ({𝑀} ∪ ((𝑀 + 1)...𝑁))) |
10 | 6, 9 | eqtrd 2808 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...𝑁) = ({𝑀} ∪ ((𝑀 + 1)...𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ∈ wcel 2050 ∪ cun 3821 {csn 4435 ‘cfv 6182 (class class class)co 6970 1c1 10330 + caddc 10332 ℤcz 11787 ℤ≥cuz 12052 ...cfz 12702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10385 ax-resscn 10386 ax-1cn 10387 ax-icn 10388 ax-addcl 10389 ax-addrcl 10390 ax-mulcl 10391 ax-mulrcl 10392 ax-mulcom 10393 ax-addass 10394 ax-mulass 10395 ax-distr 10396 ax-i2m1 10397 ax-1ne0 10398 ax-1rid 10399 ax-rnegex 10400 ax-rrecex 10401 ax-cnre 10402 ax-pre-lttri 10403 ax-pre-lttrn 10404 ax-pre-ltadd 10405 ax-pre-mulgt0 10406 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5306 df-eprel 5311 df-po 5320 df-so 5321 df-fr 5360 df-we 5362 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7495 df-2nd 7496 df-wrecs 7744 df-recs 7806 df-rdg 7844 df-er 8083 df-en 8301 df-dom 8302 df-sdom 8303 df-pnf 10470 df-mnf 10471 df-xr 10472 df-ltxr 10473 df-le 10474 df-sub 10666 df-neg 10667 df-nn 11434 df-n0 11702 df-z 11788 df-uz 12053 df-fz 12703 |
This theorem is referenced by: elfzp12 12796 elfzlmr 12960 gsummptfzsplitl 18800 chtvalz 31548 poimirlem6 34339 poimirlem7 34340 poimirlem16 34349 poimirlem18 34351 poimirlem19 34352 poimirlem20 34353 poimirlem21 34354 poimirlem22 34355 iccpartgt 42959 iccpartgel 42961 |
Copyright terms: Public domain | W3C validator |