Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hhvs | Structured version Visualization version GIF version |
Description: The vector subtraction operation of Hilbert space. (Contributed by NM, 13-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhnv.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
Ref | Expression |
---|---|
hhvs | ⊢ −ℎ = ( −𝑣 ‘𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hhnv.1 | . 2 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
2 | 1 | hhnv 29251 | . 2 ⊢ 𝑈 ∈ NrmCVec |
3 | 1 | hhba 29253 | . 2 ⊢ ℋ = (BaseSet‘𝑈) |
4 | 1, 2, 3 | h2hvs 29063 | 1 ⊢ −ℎ = ( −𝑣 ‘𝑈) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 〈cop 4552 ‘cfv 6385 −𝑣 cnsb 28675 +ℎ cva 29006 ·ℎ csm 29007 normℎcno 29009 −ℎ cmv 29011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5184 ax-sep 5197 ax-nul 5204 ax-pow 5263 ax-pr 5327 ax-un 7528 ax-cnex 10790 ax-resscn 10791 ax-1cn 10792 ax-icn 10793 ax-addcl 10794 ax-addrcl 10795 ax-mulcl 10796 ax-mulrcl 10797 ax-mulcom 10798 ax-addass 10799 ax-mulass 10800 ax-distr 10801 ax-i2m1 10802 ax-1ne0 10803 ax-1rid 10804 ax-rnegex 10805 ax-rrecex 10806 ax-cnre 10807 ax-pre-lttri 10808 ax-pre-lttrn 10809 ax-pre-ltadd 10810 ax-pre-mulgt0 10811 ax-pre-sup 10812 ax-hilex 29085 ax-hfvadd 29086 ax-hvcom 29087 ax-hvass 29088 ax-hv0cl 29089 ax-hvaddid 29090 ax-hfvmul 29091 ax-hvmulid 29092 ax-hvmulass 29093 ax-hvdistr1 29094 ax-hvdistr2 29095 ax-hvmul0 29096 ax-hfi 29165 ax-his1 29168 ax-his2 29169 ax-his3 29170 ax-his4 29171 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3415 df-sbc 3700 df-csb 3817 df-dif 3874 df-un 3876 df-in 3878 df-ss 3888 df-pss 3890 df-nul 4243 df-if 4445 df-pw 4520 df-sn 4547 df-pr 4549 df-tp 4551 df-op 4553 df-uni 4825 df-iun 4911 df-br 5059 df-opab 5121 df-mpt 5141 df-tr 5167 df-id 5460 df-eprel 5465 df-po 5473 df-so 5474 df-fr 5514 df-we 5516 df-xp 5562 df-rel 5563 df-cnv 5564 df-co 5565 df-dm 5566 df-rn 5567 df-res 5568 df-ima 5569 df-pred 6165 df-ord 6221 df-on 6222 df-lim 6223 df-suc 6224 df-iota 6343 df-fun 6387 df-fn 6388 df-f 6389 df-f1 6390 df-fo 6391 df-f1o 6392 df-fv 6393 df-riota 7175 df-ov 7221 df-oprab 7222 df-mpo 7223 df-om 7650 df-1st 7766 df-2nd 7767 df-wrecs 8052 df-recs 8113 df-rdg 8151 df-er 8396 df-en 8632 df-dom 8633 df-sdom 8634 df-sup 9063 df-pnf 10874 df-mnf 10875 df-xr 10876 df-ltxr 10877 df-le 10878 df-sub 11069 df-neg 11070 df-div 11495 df-nn 11836 df-2 11898 df-3 11899 df-4 11900 df-n0 12096 df-z 12182 df-uz 12444 df-rp 12592 df-seq 13580 df-exp 13641 df-cj 14667 df-re 14668 df-im 14669 df-sqrt 14803 df-abs 14804 df-grpo 28579 df-gid 28580 df-ginv 28581 df-gdiv 28582 df-ablo 28631 df-vc 28645 df-nv 28678 df-va 28681 df-ba 28682 df-sm 28683 df-0v 28684 df-vs 28685 df-nmcv 28686 df-hnorm 29054 df-hvsub 29057 |
This theorem is referenced by: hhims 29258 hhip 29263 hhssvs 29358 pjhthlem2 29478 hmopidmchi 30237 |
Copyright terms: Public domain | W3C validator |