Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lefldiveq | Structured version Visualization version GIF version |
Description: A closed enough, smaller real 𝐶 has the same floor of 𝐴 when both are divided by 𝐵. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
lefldiveq.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
lefldiveq.b | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
lefldiveq.c | ⊢ (𝜑 → 𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴)) |
Ref | Expression |
---|---|
lefldiveq | ⊢ (𝜑 → (⌊‘(𝐴 / 𝐵)) = (⌊‘(𝐶 / 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lefldiveq.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | lefldiveq.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
3 | moddiffl 13530 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) = (⌊‘(𝐴 / 𝐵))) | |
4 | 1, 2, 3 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) = (⌊‘(𝐴 / 𝐵))) |
5 | 1, 2 | rerpdivcld 12732 | . . . . . . 7 ⊢ (𝜑 → (𝐴 / 𝐵) ∈ ℝ) |
6 | 5 | flcld 13446 | . . . . . 6 ⊢ (𝜑 → (⌊‘(𝐴 / 𝐵)) ∈ ℤ) |
7 | 4, 6 | eqeltrd 2839 | . . . . 5 ⊢ (𝜑 → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ∈ ℤ) |
8 | flid 13456 | . . . . 5 ⊢ (((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ∈ ℤ → (⌊‘((𝐴 − (𝐴 mod 𝐵)) / 𝐵)) = ((𝐴 − (𝐴 mod 𝐵)) / 𝐵)) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝜑 → (⌊‘((𝐴 − (𝐴 mod 𝐵)) / 𝐵)) = ((𝐴 − (𝐴 mod 𝐵)) / 𝐵)) |
10 | 9, 4 | eqtr2d 2779 | . . 3 ⊢ (𝜑 → (⌊‘(𝐴 / 𝐵)) = (⌊‘((𝐴 − (𝐴 mod 𝐵)) / 𝐵))) |
11 | 1, 2 | modcld 13523 | . . . . . 6 ⊢ (𝜑 → (𝐴 mod 𝐵) ∈ ℝ) |
12 | 1, 11 | resubcld 11333 | . . . . 5 ⊢ (𝜑 → (𝐴 − (𝐴 mod 𝐵)) ∈ ℝ) |
13 | 12, 2 | rerpdivcld 12732 | . . . 4 ⊢ (𝜑 → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ∈ ℝ) |
14 | iccssre 13090 | . . . . . . 7 ⊢ (((𝐴 − (𝐴 mod 𝐵)) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐴 − (𝐴 mod 𝐵))[,]𝐴) ⊆ ℝ) | |
15 | 12, 1, 14 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → ((𝐴 − (𝐴 mod 𝐵))[,]𝐴) ⊆ ℝ) |
16 | lefldiveq.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴)) | |
17 | 15, 16 | sseldd 3918 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
18 | 17, 2 | rerpdivcld 12732 | . . . 4 ⊢ (𝜑 → (𝐶 / 𝐵) ∈ ℝ) |
19 | 12 | rexrd 10956 | . . . . . 6 ⊢ (𝜑 → (𝐴 − (𝐴 mod 𝐵)) ∈ ℝ*) |
20 | 1 | rexrd 10956 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
21 | iccgelb 13064 | . . . . . 6 ⊢ (((𝐴 − (𝐴 mod 𝐵)) ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴)) → (𝐴 − (𝐴 mod 𝐵)) ≤ 𝐶) | |
22 | 19, 20, 16, 21 | syl3anc 1369 | . . . . 5 ⊢ (𝜑 → (𝐴 − (𝐴 mod 𝐵)) ≤ 𝐶) |
23 | 12, 17, 2, 22 | lediv1dd 12759 | . . . 4 ⊢ (𝜑 → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ≤ (𝐶 / 𝐵)) |
24 | flwordi 13460 | . . . 4 ⊢ ((((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ∈ ℝ ∧ (𝐶 / 𝐵) ∈ ℝ ∧ ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ≤ (𝐶 / 𝐵)) → (⌊‘((𝐴 − (𝐴 mod 𝐵)) / 𝐵)) ≤ (⌊‘(𝐶 / 𝐵))) | |
25 | 13, 18, 23, 24 | syl3anc 1369 | . . 3 ⊢ (𝜑 → (⌊‘((𝐴 − (𝐴 mod 𝐵)) / 𝐵)) ≤ (⌊‘(𝐶 / 𝐵))) |
26 | 10, 25 | eqbrtrd 5092 | . 2 ⊢ (𝜑 → (⌊‘(𝐴 / 𝐵)) ≤ (⌊‘(𝐶 / 𝐵))) |
27 | iccleub 13063 | . . . . 5 ⊢ (((𝐴 − (𝐴 mod 𝐵)) ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴)) → 𝐶 ≤ 𝐴) | |
28 | 19, 20, 16, 27 | syl3anc 1369 | . . . 4 ⊢ (𝜑 → 𝐶 ≤ 𝐴) |
29 | 17, 1, 2, 28 | lediv1dd 12759 | . . 3 ⊢ (𝜑 → (𝐶 / 𝐵) ≤ (𝐴 / 𝐵)) |
30 | flwordi 13460 | . . 3 ⊢ (((𝐶 / 𝐵) ∈ ℝ ∧ (𝐴 / 𝐵) ∈ ℝ ∧ (𝐶 / 𝐵) ≤ (𝐴 / 𝐵)) → (⌊‘(𝐶 / 𝐵)) ≤ (⌊‘(𝐴 / 𝐵))) | |
31 | 18, 5, 29, 30 | syl3anc 1369 | . 2 ⊢ (𝜑 → (⌊‘(𝐶 / 𝐵)) ≤ (⌊‘(𝐴 / 𝐵))) |
32 | reflcl 13444 | . . . 4 ⊢ ((𝐴 / 𝐵) ∈ ℝ → (⌊‘(𝐴 / 𝐵)) ∈ ℝ) | |
33 | 5, 32 | syl 17 | . . 3 ⊢ (𝜑 → (⌊‘(𝐴 / 𝐵)) ∈ ℝ) |
34 | reflcl 13444 | . . . 4 ⊢ ((𝐶 / 𝐵) ∈ ℝ → (⌊‘(𝐶 / 𝐵)) ∈ ℝ) | |
35 | 18, 34 | syl 17 | . . 3 ⊢ (𝜑 → (⌊‘(𝐶 / 𝐵)) ∈ ℝ) |
36 | 33, 35 | letri3d 11047 | . 2 ⊢ (𝜑 → ((⌊‘(𝐴 / 𝐵)) = (⌊‘(𝐶 / 𝐵)) ↔ ((⌊‘(𝐴 / 𝐵)) ≤ (⌊‘(𝐶 / 𝐵)) ∧ (⌊‘(𝐶 / 𝐵)) ≤ (⌊‘(𝐴 / 𝐵))))) |
37 | 26, 31, 36 | mpbir2and 709 | 1 ⊢ (𝜑 → (⌊‘(𝐴 / 𝐵)) = (⌊‘(𝐶 / 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 ℝ*cxr 10939 ≤ cle 10941 − cmin 11135 / cdiv 11562 ℤcz 12249 ℝ+crp 12659 [,]cicc 13011 ⌊cfl 13438 mod cmo 13517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-icc 13015 df-fl 13440 df-mod 13518 |
This theorem is referenced by: ltmod 43069 |
Copyright terms: Public domain | W3C validator |