Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lefldiveq | Structured version Visualization version GIF version |
Description: A closed enough, smaller real 𝐶 has the same floor of 𝐴 when both are divided by 𝐵. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
lefldiveq.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
lefldiveq.b | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
lefldiveq.c | ⊢ (𝜑 → 𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴)) |
Ref | Expression |
---|---|
lefldiveq | ⊢ (𝜑 → (⌊‘(𝐴 / 𝐵)) = (⌊‘(𝐶 / 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lefldiveq.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | lefldiveq.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
3 | moddiffl 13600 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) = (⌊‘(𝐴 / 𝐵))) | |
4 | 1, 2, 3 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) = (⌊‘(𝐴 / 𝐵))) |
5 | 1, 2 | rerpdivcld 12802 | . . . . . . 7 ⊢ (𝜑 → (𝐴 / 𝐵) ∈ ℝ) |
6 | 5 | flcld 13516 | . . . . . 6 ⊢ (𝜑 → (⌊‘(𝐴 / 𝐵)) ∈ ℤ) |
7 | 4, 6 | eqeltrd 2841 | . . . . 5 ⊢ (𝜑 → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ∈ ℤ) |
8 | flid 13526 | . . . . 5 ⊢ (((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ∈ ℤ → (⌊‘((𝐴 − (𝐴 mod 𝐵)) / 𝐵)) = ((𝐴 − (𝐴 mod 𝐵)) / 𝐵)) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝜑 → (⌊‘((𝐴 − (𝐴 mod 𝐵)) / 𝐵)) = ((𝐴 − (𝐴 mod 𝐵)) / 𝐵)) |
10 | 9, 4 | eqtr2d 2781 | . . 3 ⊢ (𝜑 → (⌊‘(𝐴 / 𝐵)) = (⌊‘((𝐴 − (𝐴 mod 𝐵)) / 𝐵))) |
11 | 1, 2 | modcld 13593 | . . . . . 6 ⊢ (𝜑 → (𝐴 mod 𝐵) ∈ ℝ) |
12 | 1, 11 | resubcld 11403 | . . . . 5 ⊢ (𝜑 → (𝐴 − (𝐴 mod 𝐵)) ∈ ℝ) |
13 | 12, 2 | rerpdivcld 12802 | . . . 4 ⊢ (𝜑 → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ∈ ℝ) |
14 | iccssre 13160 | . . . . . . 7 ⊢ (((𝐴 − (𝐴 mod 𝐵)) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐴 − (𝐴 mod 𝐵))[,]𝐴) ⊆ ℝ) | |
15 | 12, 1, 14 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((𝐴 − (𝐴 mod 𝐵))[,]𝐴) ⊆ ℝ) |
16 | lefldiveq.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴)) | |
17 | 15, 16 | sseldd 3927 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
18 | 17, 2 | rerpdivcld 12802 | . . . 4 ⊢ (𝜑 → (𝐶 / 𝐵) ∈ ℝ) |
19 | 12 | rexrd 11026 | . . . . . 6 ⊢ (𝜑 → (𝐴 − (𝐴 mod 𝐵)) ∈ ℝ*) |
20 | 1 | rexrd 11026 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
21 | iccgelb 13134 | . . . . . 6 ⊢ (((𝐴 − (𝐴 mod 𝐵)) ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴)) → (𝐴 − (𝐴 mod 𝐵)) ≤ 𝐶) | |
22 | 19, 20, 16, 21 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → (𝐴 − (𝐴 mod 𝐵)) ≤ 𝐶) |
23 | 12, 17, 2, 22 | lediv1dd 12829 | . . . 4 ⊢ (𝜑 → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ≤ (𝐶 / 𝐵)) |
24 | flwordi 13530 | . . . 4 ⊢ ((((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ∈ ℝ ∧ (𝐶 / 𝐵) ∈ ℝ ∧ ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ≤ (𝐶 / 𝐵)) → (⌊‘((𝐴 − (𝐴 mod 𝐵)) / 𝐵)) ≤ (⌊‘(𝐶 / 𝐵))) | |
25 | 13, 18, 23, 24 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (⌊‘((𝐴 − (𝐴 mod 𝐵)) / 𝐵)) ≤ (⌊‘(𝐶 / 𝐵))) |
26 | 10, 25 | eqbrtrd 5101 | . 2 ⊢ (𝜑 → (⌊‘(𝐴 / 𝐵)) ≤ (⌊‘(𝐶 / 𝐵))) |
27 | iccleub 13133 | . . . . 5 ⊢ (((𝐴 − (𝐴 mod 𝐵)) ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴)) → 𝐶 ≤ 𝐴) | |
28 | 19, 20, 16, 27 | syl3anc 1370 | . . . 4 ⊢ (𝜑 → 𝐶 ≤ 𝐴) |
29 | 17, 1, 2, 28 | lediv1dd 12829 | . . 3 ⊢ (𝜑 → (𝐶 / 𝐵) ≤ (𝐴 / 𝐵)) |
30 | flwordi 13530 | . . 3 ⊢ (((𝐶 / 𝐵) ∈ ℝ ∧ (𝐴 / 𝐵) ∈ ℝ ∧ (𝐶 / 𝐵) ≤ (𝐴 / 𝐵)) → (⌊‘(𝐶 / 𝐵)) ≤ (⌊‘(𝐴 / 𝐵))) | |
31 | 18, 5, 29, 30 | syl3anc 1370 | . 2 ⊢ (𝜑 → (⌊‘(𝐶 / 𝐵)) ≤ (⌊‘(𝐴 / 𝐵))) |
32 | reflcl 13514 | . . . 4 ⊢ ((𝐴 / 𝐵) ∈ ℝ → (⌊‘(𝐴 / 𝐵)) ∈ ℝ) | |
33 | 5, 32 | syl 17 | . . 3 ⊢ (𝜑 → (⌊‘(𝐴 / 𝐵)) ∈ ℝ) |
34 | reflcl 13514 | . . . 4 ⊢ ((𝐶 / 𝐵) ∈ ℝ → (⌊‘(𝐶 / 𝐵)) ∈ ℝ) | |
35 | 18, 34 | syl 17 | . . 3 ⊢ (𝜑 → (⌊‘(𝐶 / 𝐵)) ∈ ℝ) |
36 | 33, 35 | letri3d 11117 | . 2 ⊢ (𝜑 → ((⌊‘(𝐴 / 𝐵)) = (⌊‘(𝐶 / 𝐵)) ↔ ((⌊‘(𝐴 / 𝐵)) ≤ (⌊‘(𝐶 / 𝐵)) ∧ (⌊‘(𝐶 / 𝐵)) ≤ (⌊‘(𝐴 / 𝐵))))) |
37 | 26, 31, 36 | mpbir2and 710 | 1 ⊢ (𝜑 → (⌊‘(𝐴 / 𝐵)) = (⌊‘(𝐶 / 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 ⊆ wss 3892 class class class wbr 5079 ‘cfv 6432 (class class class)co 7271 ℝcr 10871 ℝ*cxr 11009 ≤ cle 11011 − cmin 11205 / cdiv 11632 ℤcz 12319 ℝ+crp 12729 [,]cicc 13081 ⌊cfl 13508 mod cmo 13587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-sup 9179 df-inf 9180 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12582 df-rp 12730 df-icc 13085 df-fl 13510 df-mod 13588 |
This theorem is referenced by: ltmod 43150 |
Copyright terms: Public domain | W3C validator |