Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lefldiveq Structured version   Visualization version   GIF version

Theorem lefldiveq 42831
Description: A closed enough, smaller real 𝐶 has the same floor of 𝐴 when both are divided by 𝐵. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
lefldiveq.a (𝜑𝐴 ∈ ℝ)
lefldiveq.b (𝜑𝐵 ∈ ℝ+)
lefldiveq.c (𝜑𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴))
Assertion
Ref Expression
lefldiveq (𝜑 → (⌊‘(𝐴 / 𝐵)) = (⌊‘(𝐶 / 𝐵)))

Proof of Theorem lefldiveq
StepHypRef Expression
1 lefldiveq.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
2 lefldiveq.b . . . . . . 7 (𝜑𝐵 ∈ ℝ+)
3 moddiffl 13602 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) = (⌊‘(𝐴 / 𝐵)))
41, 2, 3syl2anc 584 . . . . . 6 (𝜑 → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) = (⌊‘(𝐴 / 𝐵)))
51, 2rerpdivcld 12803 . . . . . . 7 (𝜑 → (𝐴 / 𝐵) ∈ ℝ)
65flcld 13518 . . . . . 6 (𝜑 → (⌊‘(𝐴 / 𝐵)) ∈ ℤ)
74, 6eqeltrd 2839 . . . . 5 (𝜑 → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ∈ ℤ)
8 flid 13528 . . . . 5 (((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ∈ ℤ → (⌊‘((𝐴 − (𝐴 mod 𝐵)) / 𝐵)) = ((𝐴 − (𝐴 mod 𝐵)) / 𝐵))
97, 8syl 17 . . . 4 (𝜑 → (⌊‘((𝐴 − (𝐴 mod 𝐵)) / 𝐵)) = ((𝐴 − (𝐴 mod 𝐵)) / 𝐵))
109, 4eqtr2d 2779 . . 3 (𝜑 → (⌊‘(𝐴 / 𝐵)) = (⌊‘((𝐴 − (𝐴 mod 𝐵)) / 𝐵)))
111, 2modcld 13595 . . . . . 6 (𝜑 → (𝐴 mod 𝐵) ∈ ℝ)
121, 11resubcld 11403 . . . . 5 (𝜑 → (𝐴 − (𝐴 mod 𝐵)) ∈ ℝ)
1312, 2rerpdivcld 12803 . . . 4 (𝜑 → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ∈ ℝ)
14 iccssre 13161 . . . . . . 7 (((𝐴 − (𝐴 mod 𝐵)) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐴 − (𝐴 mod 𝐵))[,]𝐴) ⊆ ℝ)
1512, 1, 14syl2anc 584 . . . . . 6 (𝜑 → ((𝐴 − (𝐴 mod 𝐵))[,]𝐴) ⊆ ℝ)
16 lefldiveq.c . . . . . 6 (𝜑𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴))
1715, 16sseldd 3922 . . . . 5 (𝜑𝐶 ∈ ℝ)
1817, 2rerpdivcld 12803 . . . 4 (𝜑 → (𝐶 / 𝐵) ∈ ℝ)
1912rexrd 11025 . . . . . 6 (𝜑 → (𝐴 − (𝐴 mod 𝐵)) ∈ ℝ*)
201rexrd 11025 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
21 iccgelb 13135 . . . . . 6 (((𝐴 − (𝐴 mod 𝐵)) ∈ ℝ*𝐴 ∈ ℝ*𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴)) → (𝐴 − (𝐴 mod 𝐵)) ≤ 𝐶)
2219, 20, 16, 21syl3anc 1370 . . . . 5 (𝜑 → (𝐴 − (𝐴 mod 𝐵)) ≤ 𝐶)
2312, 17, 2, 22lediv1dd 12830 . . . 4 (𝜑 → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ≤ (𝐶 / 𝐵))
24 flwordi 13532 . . . 4 ((((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ∈ ℝ ∧ (𝐶 / 𝐵) ∈ ℝ ∧ ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ≤ (𝐶 / 𝐵)) → (⌊‘((𝐴 − (𝐴 mod 𝐵)) / 𝐵)) ≤ (⌊‘(𝐶 / 𝐵)))
2513, 18, 23, 24syl3anc 1370 . . 3 (𝜑 → (⌊‘((𝐴 − (𝐴 mod 𝐵)) / 𝐵)) ≤ (⌊‘(𝐶 / 𝐵)))
2610, 25eqbrtrd 5096 . 2 (𝜑 → (⌊‘(𝐴 / 𝐵)) ≤ (⌊‘(𝐶 / 𝐵)))
27 iccleub 13134 . . . . 5 (((𝐴 − (𝐴 mod 𝐵)) ∈ ℝ*𝐴 ∈ ℝ*𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴)) → 𝐶𝐴)
2819, 20, 16, 27syl3anc 1370 . . . 4 (𝜑𝐶𝐴)
2917, 1, 2, 28lediv1dd 12830 . . 3 (𝜑 → (𝐶 / 𝐵) ≤ (𝐴 / 𝐵))
30 flwordi 13532 . . 3 (((𝐶 / 𝐵) ∈ ℝ ∧ (𝐴 / 𝐵) ∈ ℝ ∧ (𝐶 / 𝐵) ≤ (𝐴 / 𝐵)) → (⌊‘(𝐶 / 𝐵)) ≤ (⌊‘(𝐴 / 𝐵)))
3118, 5, 29, 30syl3anc 1370 . 2 (𝜑 → (⌊‘(𝐶 / 𝐵)) ≤ (⌊‘(𝐴 / 𝐵)))
32 reflcl 13516 . . . 4 ((𝐴 / 𝐵) ∈ ℝ → (⌊‘(𝐴 / 𝐵)) ∈ ℝ)
335, 32syl 17 . . 3 (𝜑 → (⌊‘(𝐴 / 𝐵)) ∈ ℝ)
34 reflcl 13516 . . . 4 ((𝐶 / 𝐵) ∈ ℝ → (⌊‘(𝐶 / 𝐵)) ∈ ℝ)
3518, 34syl 17 . . 3 (𝜑 → (⌊‘(𝐶 / 𝐵)) ∈ ℝ)
3633, 35letri3d 11117 . 2 (𝜑 → ((⌊‘(𝐴 / 𝐵)) = (⌊‘(𝐶 / 𝐵)) ↔ ((⌊‘(𝐴 / 𝐵)) ≤ (⌊‘(𝐶 / 𝐵)) ∧ (⌊‘(𝐶 / 𝐵)) ≤ (⌊‘(𝐴 / 𝐵)))))
3726, 31, 36mpbir2and 710 1 (𝜑 → (⌊‘(𝐴 / 𝐵)) = (⌊‘(𝐶 / 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wss 3887   class class class wbr 5074  cfv 6433  (class class class)co 7275  cr 10870  *cxr 11008  cle 11010  cmin 11205   / cdiv 11632  cz 12319  +crp 12730  [,]cicc 13082  cfl 13510   mod cmo 13589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-icc 13086  df-fl 13512  df-mod 13590
This theorem is referenced by:  ltmod  43179
  Copyright terms: Public domain W3C validator