![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lefldiveq | Structured version Visualization version GIF version |
Description: A closed enough, smaller real 𝐶 has the same floor of 𝐴 when both are divided by 𝐵. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
lefldiveq.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
lefldiveq.b | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
lefldiveq.c | ⊢ (𝜑 → 𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴)) |
Ref | Expression |
---|---|
lefldiveq | ⊢ (𝜑 → (⌊‘(𝐴 / 𝐵)) = (⌊‘(𝐶 / 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lefldiveq.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | lefldiveq.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
3 | moddiffl 13897 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) = (⌊‘(𝐴 / 𝐵))) | |
4 | 1, 2, 3 | syl2anc 582 | . . . . . 6 ⊢ (𝜑 → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) = (⌊‘(𝐴 / 𝐵))) |
5 | 1, 2 | rerpdivcld 13096 | . . . . . . 7 ⊢ (𝜑 → (𝐴 / 𝐵) ∈ ℝ) |
6 | 5 | flcld 13813 | . . . . . 6 ⊢ (𝜑 → (⌊‘(𝐴 / 𝐵)) ∈ ℤ) |
7 | 4, 6 | eqeltrd 2825 | . . . . 5 ⊢ (𝜑 → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ∈ ℤ) |
8 | flid 13823 | . . . . 5 ⊢ (((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ∈ ℤ → (⌊‘((𝐴 − (𝐴 mod 𝐵)) / 𝐵)) = ((𝐴 − (𝐴 mod 𝐵)) / 𝐵)) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝜑 → (⌊‘((𝐴 − (𝐴 mod 𝐵)) / 𝐵)) = ((𝐴 − (𝐴 mod 𝐵)) / 𝐵)) |
10 | 9, 4 | eqtr2d 2766 | . . 3 ⊢ (𝜑 → (⌊‘(𝐴 / 𝐵)) = (⌊‘((𝐴 − (𝐴 mod 𝐵)) / 𝐵))) |
11 | 1, 2 | modcld 13890 | . . . . . 6 ⊢ (𝜑 → (𝐴 mod 𝐵) ∈ ℝ) |
12 | 1, 11 | resubcld 11688 | . . . . 5 ⊢ (𝜑 → (𝐴 − (𝐴 mod 𝐵)) ∈ ℝ) |
13 | 12, 2 | rerpdivcld 13096 | . . . 4 ⊢ (𝜑 → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ∈ ℝ) |
14 | iccssre 13455 | . . . . . . 7 ⊢ (((𝐴 − (𝐴 mod 𝐵)) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐴 − (𝐴 mod 𝐵))[,]𝐴) ⊆ ℝ) | |
15 | 12, 1, 14 | syl2anc 582 | . . . . . 6 ⊢ (𝜑 → ((𝐴 − (𝐴 mod 𝐵))[,]𝐴) ⊆ ℝ) |
16 | lefldiveq.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴)) | |
17 | 15, 16 | sseldd 3979 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
18 | 17, 2 | rerpdivcld 13096 | . . . 4 ⊢ (𝜑 → (𝐶 / 𝐵) ∈ ℝ) |
19 | 12 | rexrd 11310 | . . . . . 6 ⊢ (𝜑 → (𝐴 − (𝐴 mod 𝐵)) ∈ ℝ*) |
20 | 1 | rexrd 11310 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
21 | iccgelb 13429 | . . . . . 6 ⊢ (((𝐴 − (𝐴 mod 𝐵)) ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴)) → (𝐴 − (𝐴 mod 𝐵)) ≤ 𝐶) | |
22 | 19, 20, 16, 21 | syl3anc 1368 | . . . . 5 ⊢ (𝜑 → (𝐴 − (𝐴 mod 𝐵)) ≤ 𝐶) |
23 | 12, 17, 2, 22 | lediv1dd 13123 | . . . 4 ⊢ (𝜑 → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ≤ (𝐶 / 𝐵)) |
24 | flwordi 13827 | . . . 4 ⊢ ((((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ∈ ℝ ∧ (𝐶 / 𝐵) ∈ ℝ ∧ ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ≤ (𝐶 / 𝐵)) → (⌊‘((𝐴 − (𝐴 mod 𝐵)) / 𝐵)) ≤ (⌊‘(𝐶 / 𝐵))) | |
25 | 13, 18, 23, 24 | syl3anc 1368 | . . 3 ⊢ (𝜑 → (⌊‘((𝐴 − (𝐴 mod 𝐵)) / 𝐵)) ≤ (⌊‘(𝐶 / 𝐵))) |
26 | 10, 25 | eqbrtrd 5174 | . 2 ⊢ (𝜑 → (⌊‘(𝐴 / 𝐵)) ≤ (⌊‘(𝐶 / 𝐵))) |
27 | iccleub 13428 | . . . . 5 ⊢ (((𝐴 − (𝐴 mod 𝐵)) ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴)) → 𝐶 ≤ 𝐴) | |
28 | 19, 20, 16, 27 | syl3anc 1368 | . . . 4 ⊢ (𝜑 → 𝐶 ≤ 𝐴) |
29 | 17, 1, 2, 28 | lediv1dd 13123 | . . 3 ⊢ (𝜑 → (𝐶 / 𝐵) ≤ (𝐴 / 𝐵)) |
30 | flwordi 13827 | . . 3 ⊢ (((𝐶 / 𝐵) ∈ ℝ ∧ (𝐴 / 𝐵) ∈ ℝ ∧ (𝐶 / 𝐵) ≤ (𝐴 / 𝐵)) → (⌊‘(𝐶 / 𝐵)) ≤ (⌊‘(𝐴 / 𝐵))) | |
31 | 18, 5, 29, 30 | syl3anc 1368 | . 2 ⊢ (𝜑 → (⌊‘(𝐶 / 𝐵)) ≤ (⌊‘(𝐴 / 𝐵))) |
32 | reflcl 13811 | . . . 4 ⊢ ((𝐴 / 𝐵) ∈ ℝ → (⌊‘(𝐴 / 𝐵)) ∈ ℝ) | |
33 | 5, 32 | syl 17 | . . 3 ⊢ (𝜑 → (⌊‘(𝐴 / 𝐵)) ∈ ℝ) |
34 | reflcl 13811 | . . . 4 ⊢ ((𝐶 / 𝐵) ∈ ℝ → (⌊‘(𝐶 / 𝐵)) ∈ ℝ) | |
35 | 18, 34 | syl 17 | . . 3 ⊢ (𝜑 → (⌊‘(𝐶 / 𝐵)) ∈ ℝ) |
36 | 33, 35 | letri3d 11402 | . 2 ⊢ (𝜑 → ((⌊‘(𝐴 / 𝐵)) = (⌊‘(𝐶 / 𝐵)) ↔ ((⌊‘(𝐴 / 𝐵)) ≤ (⌊‘(𝐶 / 𝐵)) ∧ (⌊‘(𝐶 / 𝐵)) ≤ (⌊‘(𝐴 / 𝐵))))) |
37 | 26, 31, 36 | mpbir2and 711 | 1 ⊢ (𝜑 → (⌊‘(𝐴 / 𝐵)) = (⌊‘(𝐶 / 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ⊆ wss 3946 class class class wbr 5152 ‘cfv 6553 (class class class)co 7423 ℝcr 11153 ℝ*cxr 11293 ≤ cle 11295 − cmin 11490 / cdiv 11917 ℤcz 12605 ℝ+crp 13023 [,]cicc 13376 ⌊cfl 13805 mod cmo 13884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5303 ax-nul 5310 ax-pow 5368 ax-pr 5432 ax-un 7745 ax-cnex 11210 ax-resscn 11211 ax-1cn 11212 ax-icn 11213 ax-addcl 11214 ax-addrcl 11215 ax-mulcl 11216 ax-mulrcl 11217 ax-mulcom 11218 ax-addass 11219 ax-mulass 11220 ax-distr 11221 ax-i2m1 11222 ax-1ne0 11223 ax-1rid 11224 ax-rnegex 11225 ax-rrecex 11226 ax-cnre 11227 ax-pre-lttri 11228 ax-pre-lttrn 11229 ax-pre-ltadd 11230 ax-pre-mulgt0 11231 ax-pre-sup 11232 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4325 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5579 df-eprel 5585 df-po 5593 df-so 5594 df-fr 5636 df-we 5638 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-pred 6311 df-ord 6378 df-on 6379 df-lim 6380 df-suc 6381 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7379 df-ov 7426 df-oprab 7427 df-mpo 7428 df-om 7876 df-2nd 8003 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-er 8733 df-en 8974 df-dom 8975 df-sdom 8976 df-sup 9481 df-inf 9482 df-pnf 11296 df-mnf 11297 df-xr 11298 df-ltxr 11299 df-le 11300 df-sub 11492 df-neg 11493 df-div 11918 df-nn 12260 df-n0 12520 df-z 12606 df-uz 12870 df-rp 13024 df-icc 13380 df-fl 13807 df-mod 13885 |
This theorem is referenced by: ltmod 45208 |
Copyright terms: Public domain | W3C validator |