| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lefldiveq | Structured version Visualization version GIF version | ||
| Description: A closed enough, smaller real 𝐶 has the same floor of 𝐴 when both are divided by 𝐵. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| lefldiveq.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| lefldiveq.b | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
| lefldiveq.c | ⊢ (𝜑 → 𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴)) |
| Ref | Expression |
|---|---|
| lefldiveq | ⊢ (𝜑 → (⌊‘(𝐴 / 𝐵)) = (⌊‘(𝐶 / 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lefldiveq.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | lefldiveq.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
| 3 | moddiffl 13844 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) = (⌊‘(𝐴 / 𝐵))) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) = (⌊‘(𝐴 / 𝐵))) |
| 5 | 1, 2 | rerpdivcld 13026 | . . . . . . 7 ⊢ (𝜑 → (𝐴 / 𝐵) ∈ ℝ) |
| 6 | 5 | flcld 13760 | . . . . . 6 ⊢ (𝜑 → (⌊‘(𝐴 / 𝐵)) ∈ ℤ) |
| 7 | 4, 6 | eqeltrd 2828 | . . . . 5 ⊢ (𝜑 → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ∈ ℤ) |
| 8 | flid 13770 | . . . . 5 ⊢ (((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ∈ ℤ → (⌊‘((𝐴 − (𝐴 mod 𝐵)) / 𝐵)) = ((𝐴 − (𝐴 mod 𝐵)) / 𝐵)) | |
| 9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝜑 → (⌊‘((𝐴 − (𝐴 mod 𝐵)) / 𝐵)) = ((𝐴 − (𝐴 mod 𝐵)) / 𝐵)) |
| 10 | 9, 4 | eqtr2d 2765 | . . 3 ⊢ (𝜑 → (⌊‘(𝐴 / 𝐵)) = (⌊‘((𝐴 − (𝐴 mod 𝐵)) / 𝐵))) |
| 11 | 1, 2 | modcld 13837 | . . . . . 6 ⊢ (𝜑 → (𝐴 mod 𝐵) ∈ ℝ) |
| 12 | 1, 11 | resubcld 11606 | . . . . 5 ⊢ (𝜑 → (𝐴 − (𝐴 mod 𝐵)) ∈ ℝ) |
| 13 | 12, 2 | rerpdivcld 13026 | . . . 4 ⊢ (𝜑 → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ∈ ℝ) |
| 14 | iccssre 13390 | . . . . . . 7 ⊢ (((𝐴 − (𝐴 mod 𝐵)) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐴 − (𝐴 mod 𝐵))[,]𝐴) ⊆ ℝ) | |
| 15 | 12, 1, 14 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((𝐴 − (𝐴 mod 𝐵))[,]𝐴) ⊆ ℝ) |
| 16 | lefldiveq.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴)) | |
| 17 | 15, 16 | sseldd 3947 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 18 | 17, 2 | rerpdivcld 13026 | . . . 4 ⊢ (𝜑 → (𝐶 / 𝐵) ∈ ℝ) |
| 19 | 12 | rexrd 11224 | . . . . . 6 ⊢ (𝜑 → (𝐴 − (𝐴 mod 𝐵)) ∈ ℝ*) |
| 20 | 1 | rexrd 11224 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| 21 | iccgelb 13363 | . . . . . 6 ⊢ (((𝐴 − (𝐴 mod 𝐵)) ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴)) → (𝐴 − (𝐴 mod 𝐵)) ≤ 𝐶) | |
| 22 | 19, 20, 16, 21 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝐴 − (𝐴 mod 𝐵)) ≤ 𝐶) |
| 23 | 12, 17, 2, 22 | lediv1dd 13053 | . . . 4 ⊢ (𝜑 → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ≤ (𝐶 / 𝐵)) |
| 24 | flwordi 13774 | . . . 4 ⊢ ((((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ∈ ℝ ∧ (𝐶 / 𝐵) ∈ ℝ ∧ ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ≤ (𝐶 / 𝐵)) → (⌊‘((𝐴 − (𝐴 mod 𝐵)) / 𝐵)) ≤ (⌊‘(𝐶 / 𝐵))) | |
| 25 | 13, 18, 23, 24 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (⌊‘((𝐴 − (𝐴 mod 𝐵)) / 𝐵)) ≤ (⌊‘(𝐶 / 𝐵))) |
| 26 | 10, 25 | eqbrtrd 5129 | . 2 ⊢ (𝜑 → (⌊‘(𝐴 / 𝐵)) ≤ (⌊‘(𝐶 / 𝐵))) |
| 27 | iccleub 13362 | . . . . 5 ⊢ (((𝐴 − (𝐴 mod 𝐵)) ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴)) → 𝐶 ≤ 𝐴) | |
| 28 | 19, 20, 16, 27 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → 𝐶 ≤ 𝐴) |
| 29 | 17, 1, 2, 28 | lediv1dd 13053 | . . 3 ⊢ (𝜑 → (𝐶 / 𝐵) ≤ (𝐴 / 𝐵)) |
| 30 | flwordi 13774 | . . 3 ⊢ (((𝐶 / 𝐵) ∈ ℝ ∧ (𝐴 / 𝐵) ∈ ℝ ∧ (𝐶 / 𝐵) ≤ (𝐴 / 𝐵)) → (⌊‘(𝐶 / 𝐵)) ≤ (⌊‘(𝐴 / 𝐵))) | |
| 31 | 18, 5, 29, 30 | syl3anc 1373 | . 2 ⊢ (𝜑 → (⌊‘(𝐶 / 𝐵)) ≤ (⌊‘(𝐴 / 𝐵))) |
| 32 | reflcl 13758 | . . . 4 ⊢ ((𝐴 / 𝐵) ∈ ℝ → (⌊‘(𝐴 / 𝐵)) ∈ ℝ) | |
| 33 | 5, 32 | syl 17 | . . 3 ⊢ (𝜑 → (⌊‘(𝐴 / 𝐵)) ∈ ℝ) |
| 34 | reflcl 13758 | . . . 4 ⊢ ((𝐶 / 𝐵) ∈ ℝ → (⌊‘(𝐶 / 𝐵)) ∈ ℝ) | |
| 35 | 18, 34 | syl 17 | . . 3 ⊢ (𝜑 → (⌊‘(𝐶 / 𝐵)) ∈ ℝ) |
| 36 | 33, 35 | letri3d 11316 | . 2 ⊢ (𝜑 → ((⌊‘(𝐴 / 𝐵)) = (⌊‘(𝐶 / 𝐵)) ↔ ((⌊‘(𝐴 / 𝐵)) ≤ (⌊‘(𝐶 / 𝐵)) ∧ (⌊‘(𝐶 / 𝐵)) ≤ (⌊‘(𝐴 / 𝐵))))) |
| 37 | 26, 31, 36 | mpbir2and 713 | 1 ⊢ (𝜑 → (⌊‘(𝐴 / 𝐵)) = (⌊‘(𝐶 / 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 ℝ*cxr 11207 ≤ cle 11209 − cmin 11405 / cdiv 11835 ℤcz 12529 ℝ+crp 12951 [,]cicc 13309 ⌊cfl 13752 mod cmo 13831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-icc 13313 df-fl 13754 df-mod 13832 |
| This theorem is referenced by: ltmod 45636 |
| Copyright terms: Public domain | W3C validator |