Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lefldiveq Structured version   Visualization version   GIF version

Theorem lefldiveq 45243
Description: A closed enough, smaller real 𝐶 has the same floor of 𝐴 when both are divided by 𝐵. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
lefldiveq.a (𝜑𝐴 ∈ ℝ)
lefldiveq.b (𝜑𝐵 ∈ ℝ+)
lefldiveq.c (𝜑𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴))
Assertion
Ref Expression
lefldiveq (𝜑 → (⌊‘(𝐴 / 𝐵)) = (⌊‘(𝐶 / 𝐵)))

Proof of Theorem lefldiveq
StepHypRef Expression
1 lefldiveq.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
2 lefldiveq.b . . . . . . 7 (𝜑𝐵 ∈ ℝ+)
3 moddiffl 13919 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) = (⌊‘(𝐴 / 𝐵)))
41, 2, 3syl2anc 584 . . . . . 6 (𝜑 → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) = (⌊‘(𝐴 / 𝐵)))
51, 2rerpdivcld 13106 . . . . . . 7 (𝜑 → (𝐴 / 𝐵) ∈ ℝ)
65flcld 13835 . . . . . 6 (𝜑 → (⌊‘(𝐴 / 𝐵)) ∈ ℤ)
74, 6eqeltrd 2839 . . . . 5 (𝜑 → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ∈ ℤ)
8 flid 13845 . . . . 5 (((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ∈ ℤ → (⌊‘((𝐴 − (𝐴 mod 𝐵)) / 𝐵)) = ((𝐴 − (𝐴 mod 𝐵)) / 𝐵))
97, 8syl 17 . . . 4 (𝜑 → (⌊‘((𝐴 − (𝐴 mod 𝐵)) / 𝐵)) = ((𝐴 − (𝐴 mod 𝐵)) / 𝐵))
109, 4eqtr2d 2776 . . 3 (𝜑 → (⌊‘(𝐴 / 𝐵)) = (⌊‘((𝐴 − (𝐴 mod 𝐵)) / 𝐵)))
111, 2modcld 13912 . . . . . 6 (𝜑 → (𝐴 mod 𝐵) ∈ ℝ)
121, 11resubcld 11689 . . . . 5 (𝜑 → (𝐴 − (𝐴 mod 𝐵)) ∈ ℝ)
1312, 2rerpdivcld 13106 . . . 4 (𝜑 → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ∈ ℝ)
14 iccssre 13466 . . . . . . 7 (((𝐴 − (𝐴 mod 𝐵)) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐴 − (𝐴 mod 𝐵))[,]𝐴) ⊆ ℝ)
1512, 1, 14syl2anc 584 . . . . . 6 (𝜑 → ((𝐴 − (𝐴 mod 𝐵))[,]𝐴) ⊆ ℝ)
16 lefldiveq.c . . . . . 6 (𝜑𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴))
1715, 16sseldd 3996 . . . . 5 (𝜑𝐶 ∈ ℝ)
1817, 2rerpdivcld 13106 . . . 4 (𝜑 → (𝐶 / 𝐵) ∈ ℝ)
1912rexrd 11309 . . . . . 6 (𝜑 → (𝐴 − (𝐴 mod 𝐵)) ∈ ℝ*)
201rexrd 11309 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
21 iccgelb 13440 . . . . . 6 (((𝐴 − (𝐴 mod 𝐵)) ∈ ℝ*𝐴 ∈ ℝ*𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴)) → (𝐴 − (𝐴 mod 𝐵)) ≤ 𝐶)
2219, 20, 16, 21syl3anc 1370 . . . . 5 (𝜑 → (𝐴 − (𝐴 mod 𝐵)) ≤ 𝐶)
2312, 17, 2, 22lediv1dd 13133 . . . 4 (𝜑 → ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ≤ (𝐶 / 𝐵))
24 flwordi 13849 . . . 4 ((((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ∈ ℝ ∧ (𝐶 / 𝐵) ∈ ℝ ∧ ((𝐴 − (𝐴 mod 𝐵)) / 𝐵) ≤ (𝐶 / 𝐵)) → (⌊‘((𝐴 − (𝐴 mod 𝐵)) / 𝐵)) ≤ (⌊‘(𝐶 / 𝐵)))
2513, 18, 23, 24syl3anc 1370 . . 3 (𝜑 → (⌊‘((𝐴 − (𝐴 mod 𝐵)) / 𝐵)) ≤ (⌊‘(𝐶 / 𝐵)))
2610, 25eqbrtrd 5170 . 2 (𝜑 → (⌊‘(𝐴 / 𝐵)) ≤ (⌊‘(𝐶 / 𝐵)))
27 iccleub 13439 . . . . 5 (((𝐴 − (𝐴 mod 𝐵)) ∈ ℝ*𝐴 ∈ ℝ*𝐶 ∈ ((𝐴 − (𝐴 mod 𝐵))[,]𝐴)) → 𝐶𝐴)
2819, 20, 16, 27syl3anc 1370 . . . 4 (𝜑𝐶𝐴)
2917, 1, 2, 28lediv1dd 13133 . . 3 (𝜑 → (𝐶 / 𝐵) ≤ (𝐴 / 𝐵))
30 flwordi 13849 . . 3 (((𝐶 / 𝐵) ∈ ℝ ∧ (𝐴 / 𝐵) ∈ ℝ ∧ (𝐶 / 𝐵) ≤ (𝐴 / 𝐵)) → (⌊‘(𝐶 / 𝐵)) ≤ (⌊‘(𝐴 / 𝐵)))
3118, 5, 29, 30syl3anc 1370 . 2 (𝜑 → (⌊‘(𝐶 / 𝐵)) ≤ (⌊‘(𝐴 / 𝐵)))
32 reflcl 13833 . . . 4 ((𝐴 / 𝐵) ∈ ℝ → (⌊‘(𝐴 / 𝐵)) ∈ ℝ)
335, 32syl 17 . . 3 (𝜑 → (⌊‘(𝐴 / 𝐵)) ∈ ℝ)
34 reflcl 13833 . . . 4 ((𝐶 / 𝐵) ∈ ℝ → (⌊‘(𝐶 / 𝐵)) ∈ ℝ)
3518, 34syl 17 . . 3 (𝜑 → (⌊‘(𝐶 / 𝐵)) ∈ ℝ)
3633, 35letri3d 11401 . 2 (𝜑 → ((⌊‘(𝐴 / 𝐵)) = (⌊‘(𝐶 / 𝐵)) ↔ ((⌊‘(𝐴 / 𝐵)) ≤ (⌊‘(𝐶 / 𝐵)) ∧ (⌊‘(𝐶 / 𝐵)) ≤ (⌊‘(𝐴 / 𝐵)))))
3726, 31, 36mpbir2and 713 1 (𝜑 → (⌊‘(𝐴 / 𝐵)) = (⌊‘(𝐶 / 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wss 3963   class class class wbr 5148  cfv 6563  (class class class)co 7431  cr 11152  *cxr 11292  cle 11294  cmin 11490   / cdiv 11918  cz 12611  +crp 13032  [,]cicc 13387  cfl 13827   mod cmo 13906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-icc 13391  df-fl 13829  df-mod 13907
This theorem is referenced by:  ltmod  45594
  Copyright terms: Public domain W3C validator