Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem27 Structured version   Visualization version   GIF version

Theorem fourierdlem27 46055
Description: A partition open interval is a subset of the partitioned open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem27.a (𝜑𝐴 ∈ ℝ*)
fourierdlem27.b (𝜑𝐵 ∈ ℝ*)
fourierdlem27.q (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
fourierdlem27.i (𝜑𝐼 ∈ (0..^𝑀))
Assertion
Ref Expression
fourierdlem27 (𝜑 → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (𝐴(,)𝐵))

Proof of Theorem fourierdlem27
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem27.a . . . . 5 (𝜑𝐴 ∈ ℝ*)
21adantr 480 . . . 4 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐴 ∈ ℝ*)
3 fourierdlem27.b . . . . 5 (𝜑𝐵 ∈ ℝ*)
43adantr 480 . . . 4 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐵 ∈ ℝ*)
5 elioore 13437 . . . . 5 (𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) → 𝑥 ∈ ℝ)
65adantl 481 . . . 4 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ℝ)
7 iccssxr 13490 . . . . . . 7 (𝐴[,]𝐵) ⊆ ℝ*
8 fourierdlem27.q . . . . . . . 8 (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
9 fourierdlem27.i . . . . . . . . 9 (𝜑𝐼 ∈ (0..^𝑀))
10 elfzofz 13732 . . . . . . . . 9 (𝐼 ∈ (0..^𝑀) → 𝐼 ∈ (0...𝑀))
119, 10syl 17 . . . . . . . 8 (𝜑𝐼 ∈ (0...𝑀))
128, 11ffvelcdmd 7119 . . . . . . 7 (𝜑 → (𝑄𝐼) ∈ (𝐴[,]𝐵))
137, 12sselid 4006 . . . . . 6 (𝜑 → (𝑄𝐼) ∈ ℝ*)
1413adantr 480 . . . . 5 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄𝐼) ∈ ℝ*)
156rexrd 11340 . . . . 5 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ℝ*)
16 iccgelb 13463 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑄𝐼) ∈ (𝐴[,]𝐵)) → 𝐴 ≤ (𝑄𝐼))
171, 3, 12, 16syl3anc 1371 . . . . . 6 (𝜑𝐴 ≤ (𝑄𝐼))
1817adantr 480 . . . . 5 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐴 ≤ (𝑄𝐼))
19 fzofzp1 13814 . . . . . . . . . 10 (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀))
209, 19syl 17 . . . . . . . . 9 (𝜑 → (𝐼 + 1) ∈ (0...𝑀))
218, 20ffvelcdmd 7119 . . . . . . . 8 (𝜑 → (𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵))
227, 21sselid 4006 . . . . . . 7 (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
2322adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
24 simpr 484 . . . . . 6 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))))
25 ioogtlb 45413 . . . . . 6 (((𝑄𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄𝐼) < 𝑥)
2614, 23, 24, 25syl3anc 1371 . . . . 5 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄𝐼) < 𝑥)
272, 14, 15, 18, 26xrlelttrd 13222 . . . 4 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐴 < 𝑥)
28 iooltub 45428 . . . . . 6 (((𝑄𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 < (𝑄‘(𝐼 + 1)))
2914, 23, 24, 28syl3anc 1371 . . . . 5 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 < (𝑄‘(𝐼 + 1)))
30 iccleub 13462 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵)) → (𝑄‘(𝐼 + 1)) ≤ 𝐵)
311, 3, 21, 30syl3anc 1371 . . . . . 6 (𝜑 → (𝑄‘(𝐼 + 1)) ≤ 𝐵)
3231adantr 480 . . . . 5 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘(𝐼 + 1)) ≤ 𝐵)
3315, 23, 4, 29, 32xrltletrd 13223 . . . 4 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 < 𝐵)
342, 4, 6, 27, 33eliood 45416 . . 3 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ (𝐴(,)𝐵))
3534ralrimiva 3152 . 2 (𝜑 → ∀𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))𝑥 ∈ (𝐴(,)𝐵))
36 dfss3 3997 . 2 (((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (𝐴(,)𝐵) ↔ ∀𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))𝑥 ∈ (𝐴(,)𝐵))
3735, 36sylibr 234 1 (𝜑 → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (𝐴(,)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wral 3067  wss 3976   class class class wbr 5166  wf 6569  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   + caddc 11187  *cxr 11323   < clt 11324  cle 11325  (,)cioo 13407  [,]cicc 13410  ...cfz 13567  ..^cfzo 13711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-ioo 13411  df-icc 13414  df-fz 13568  df-fzo 13712
This theorem is referenced by:  fourierdlem102  46129  fourierdlem114  46141
  Copyright terms: Public domain W3C validator