Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem27 Structured version   Visualization version   GIF version

Theorem fourierdlem27 46130
Description: A partition open interval is a subset of the partitioned open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem27.a (𝜑𝐴 ∈ ℝ*)
fourierdlem27.b (𝜑𝐵 ∈ ℝ*)
fourierdlem27.q (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
fourierdlem27.i (𝜑𝐼 ∈ (0..^𝑀))
Assertion
Ref Expression
fourierdlem27 (𝜑 → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (𝐴(,)𝐵))

Proof of Theorem fourierdlem27
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem27.a . . . . 5 (𝜑𝐴 ∈ ℝ*)
21adantr 480 . . . 4 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐴 ∈ ℝ*)
3 fourierdlem27.b . . . . 5 (𝜑𝐵 ∈ ℝ*)
43adantr 480 . . . 4 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐵 ∈ ℝ*)
5 elioore 13397 . . . . 5 (𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) → 𝑥 ∈ ℝ)
65adantl 481 . . . 4 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ℝ)
7 iccssxr 13452 . . . . . . 7 (𝐴[,]𝐵) ⊆ ℝ*
8 fourierdlem27.q . . . . . . . 8 (𝜑𝑄:(0...𝑀)⟶(𝐴[,]𝐵))
9 fourierdlem27.i . . . . . . . . 9 (𝜑𝐼 ∈ (0..^𝑀))
10 elfzofz 13697 . . . . . . . . 9 (𝐼 ∈ (0..^𝑀) → 𝐼 ∈ (0...𝑀))
119, 10syl 17 . . . . . . . 8 (𝜑𝐼 ∈ (0...𝑀))
128, 11ffvelcdmd 7080 . . . . . . 7 (𝜑 → (𝑄𝐼) ∈ (𝐴[,]𝐵))
137, 12sselid 3961 . . . . . 6 (𝜑 → (𝑄𝐼) ∈ ℝ*)
1413adantr 480 . . . . 5 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄𝐼) ∈ ℝ*)
156rexrd 11290 . . . . 5 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ℝ*)
16 iccgelb 13424 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑄𝐼) ∈ (𝐴[,]𝐵)) → 𝐴 ≤ (𝑄𝐼))
171, 3, 12, 16syl3anc 1373 . . . . . 6 (𝜑𝐴 ≤ (𝑄𝐼))
1817adantr 480 . . . . 5 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐴 ≤ (𝑄𝐼))
19 fzofzp1 13785 . . . . . . . . . 10 (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀))
209, 19syl 17 . . . . . . . . 9 (𝜑 → (𝐼 + 1) ∈ (0...𝑀))
218, 20ffvelcdmd 7080 . . . . . . . 8 (𝜑 → (𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵))
227, 21sselid 3961 . . . . . . 7 (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
2322adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘(𝐼 + 1)) ∈ ℝ*)
24 simpr 484 . . . . . 6 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))))
25 ioogtlb 45491 . . . . . 6 (((𝑄𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄𝐼) < 𝑥)
2614, 23, 24, 25syl3anc 1373 . . . . 5 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄𝐼) < 𝑥)
272, 14, 15, 18, 26xrlelttrd 13181 . . . 4 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐴 < 𝑥)
28 iooltub 45506 . . . . . 6 (((𝑄𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ*𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 < (𝑄‘(𝐼 + 1)))
2914, 23, 24, 28syl3anc 1373 . . . . 5 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 < (𝑄‘(𝐼 + 1)))
30 iccleub 13423 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵)) → (𝑄‘(𝐼 + 1)) ≤ 𝐵)
311, 3, 21, 30syl3anc 1373 . . . . . 6 (𝜑 → (𝑄‘(𝐼 + 1)) ≤ 𝐵)
3231adantr 480 . . . . 5 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘(𝐼 + 1)) ≤ 𝐵)
3315, 23, 4, 29, 32xrltletrd 13182 . . . 4 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 < 𝐵)
342, 4, 6, 27, 33eliood 45494 . . 3 ((𝜑𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ (𝐴(,)𝐵))
3534ralrimiva 3133 . 2 (𝜑 → ∀𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))𝑥 ∈ (𝐴(,)𝐵))
36 dfss3 3952 . 2 (((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (𝐴(,)𝐵) ↔ ∀𝑥 ∈ ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1)))𝑥 ∈ (𝐴(,)𝐵))
3735, 36sylibr 234 1 (𝜑 → ((𝑄𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (𝐴(,)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3052  wss 3931   class class class wbr 5124  wf 6532  cfv 6536  (class class class)co 7410  cr 11133  0cc0 11134  1c1 11135   + caddc 11137  *cxr 11273   < clt 11274  cle 11275  (,)cioo 13367  [,]cicc 13370  ...cfz 13529  ..^cfzo 13676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-ioo 13371  df-icc 13374  df-fz 13530  df-fzo 13677
This theorem is referenced by:  fourierdlem102  46204  fourierdlem114  46216
  Copyright terms: Public domain W3C validator