Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem27 | Structured version Visualization version GIF version |
Description: A partition open interval is a subset of the partitioned open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fourierdlem27.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
fourierdlem27.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
fourierdlem27.q | ⊢ (𝜑 → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) |
fourierdlem27.i | ⊢ (𝜑 → 𝐼 ∈ (0..^𝑀)) |
Ref | Expression |
---|---|
fourierdlem27 | ⊢ (𝜑 → ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (𝐴(,)𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fourierdlem27.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
2 | 1 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐴 ∈ ℝ*) |
3 | fourierdlem27.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
4 | 3 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐵 ∈ ℝ*) |
5 | elioore 13108 | . . . . 5 ⊢ (𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) → 𝑥 ∈ ℝ) | |
6 | 5 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ℝ) |
7 | iccssxr 13161 | . . . . . . 7 ⊢ (𝐴[,]𝐵) ⊆ ℝ* | |
8 | fourierdlem27.q | . . . . . . . 8 ⊢ (𝜑 → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) | |
9 | fourierdlem27.i | . . . . . . . . 9 ⊢ (𝜑 → 𝐼 ∈ (0..^𝑀)) | |
10 | elfzofz 13401 | . . . . . . . . 9 ⊢ (𝐼 ∈ (0..^𝑀) → 𝐼 ∈ (0...𝑀)) | |
11 | 9, 10 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) |
12 | 8, 11 | ffvelrnd 6959 | . . . . . . 7 ⊢ (𝜑 → (𝑄‘𝐼) ∈ (𝐴[,]𝐵)) |
13 | 7, 12 | sselid 3924 | . . . . . 6 ⊢ (𝜑 → (𝑄‘𝐼) ∈ ℝ*) |
14 | 13 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘𝐼) ∈ ℝ*) |
15 | 6 | rexrd 11026 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ℝ*) |
16 | iccgelb 13134 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝑄‘𝐼) ∈ (𝐴[,]𝐵)) → 𝐴 ≤ (𝑄‘𝐼)) | |
17 | 1, 3, 12, 16 | syl3anc 1370 | . . . . . 6 ⊢ (𝜑 → 𝐴 ≤ (𝑄‘𝐼)) |
18 | 17 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐴 ≤ (𝑄‘𝐼)) |
19 | fzofzp1 13482 | . . . . . . . . . 10 ⊢ (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀)) | |
20 | 9, 19 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (𝐼 + 1) ∈ (0...𝑀)) |
21 | 8, 20 | ffvelrnd 6959 | . . . . . . . 8 ⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵)) |
22 | 7, 21 | sselid 3924 | . . . . . . 7 ⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ℝ*) |
23 | 22 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘(𝐼 + 1)) ∈ ℝ*) |
24 | simpr 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) | |
25 | ioogtlb 43004 | . . . . . 6 ⊢ (((𝑄‘𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ* ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘𝐼) < 𝑥) | |
26 | 14, 23, 24, 25 | syl3anc 1370 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘𝐼) < 𝑥) |
27 | 2, 14, 15, 18, 26 | xrlelttrd 12893 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐴 < 𝑥) |
28 | iooltub 43019 | . . . . . 6 ⊢ (((𝑄‘𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ* ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 < (𝑄‘(𝐼 + 1))) | |
29 | 14, 23, 24, 28 | syl3anc 1370 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 < (𝑄‘(𝐼 + 1))) |
30 | iccleub 13133 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵)) → (𝑄‘(𝐼 + 1)) ≤ 𝐵) | |
31 | 1, 3, 21, 30 | syl3anc 1370 | . . . . . 6 ⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ≤ 𝐵) |
32 | 31 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘(𝐼 + 1)) ≤ 𝐵) |
33 | 15, 23, 4, 29, 32 | xrltletrd 12894 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 < 𝐵) |
34 | 2, 4, 6, 27, 33 | eliood 43007 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ (𝐴(,)𝐵)) |
35 | 34 | ralrimiva 3110 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))𝑥 ∈ (𝐴(,)𝐵)) |
36 | dfss3 3914 | . 2 ⊢ (((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (𝐴(,)𝐵) ↔ ∀𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))𝑥 ∈ (𝐴(,)𝐵)) | |
37 | 35, 36 | sylibr 233 | 1 ⊢ (𝜑 → ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (𝐴(,)𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2110 ∀wral 3066 ⊆ wss 3892 class class class wbr 5079 ⟶wf 6428 ‘cfv 6432 (class class class)co 7271 ℝcr 10871 0cc0 10872 1c1 10873 + caddc 10875 ℝ*cxr 11009 < clt 11010 ≤ cle 11011 (,)cioo 13078 [,]cicc 13081 ...cfz 13238 ..^cfzo 13381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12582 df-ioo 13082 df-icc 13085 df-fz 13239 df-fzo 13382 |
This theorem is referenced by: fourierdlem102 43720 fourierdlem114 43732 |
Copyright terms: Public domain | W3C validator |