| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem27 | Structured version Visualization version GIF version | ||
| Description: A partition open interval is a subset of the partitioned open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fourierdlem27.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| fourierdlem27.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| fourierdlem27.q | ⊢ (𝜑 → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) |
| fourierdlem27.i | ⊢ (𝜑 → 𝐼 ∈ (0..^𝑀)) |
| Ref | Expression |
|---|---|
| fourierdlem27 | ⊢ (𝜑 → ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (𝐴(,)𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fourierdlem27.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐴 ∈ ℝ*) |
| 3 | fourierdlem27.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐵 ∈ ℝ*) |
| 5 | elioore 13336 | . . . . 5 ⊢ (𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) → 𝑥 ∈ ℝ) | |
| 6 | 5 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ℝ) |
| 7 | iccssxr 13391 | . . . . . . 7 ⊢ (𝐴[,]𝐵) ⊆ ℝ* | |
| 8 | fourierdlem27.q | . . . . . . . 8 ⊢ (𝜑 → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) | |
| 9 | fourierdlem27.i | . . . . . . . . 9 ⊢ (𝜑 → 𝐼 ∈ (0..^𝑀)) | |
| 10 | elfzofz 13636 | . . . . . . . . 9 ⊢ (𝐼 ∈ (0..^𝑀) → 𝐼 ∈ (0...𝑀)) | |
| 11 | 9, 10 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) |
| 12 | 8, 11 | ffvelcdmd 7057 | . . . . . . 7 ⊢ (𝜑 → (𝑄‘𝐼) ∈ (𝐴[,]𝐵)) |
| 13 | 7, 12 | sselid 3944 | . . . . . 6 ⊢ (𝜑 → (𝑄‘𝐼) ∈ ℝ*) |
| 14 | 13 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘𝐼) ∈ ℝ*) |
| 15 | 6 | rexrd 11224 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ℝ*) |
| 16 | iccgelb 13363 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝑄‘𝐼) ∈ (𝐴[,]𝐵)) → 𝐴 ≤ (𝑄‘𝐼)) | |
| 17 | 1, 3, 12, 16 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → 𝐴 ≤ (𝑄‘𝐼)) |
| 18 | 17 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐴 ≤ (𝑄‘𝐼)) |
| 19 | fzofzp1 13725 | . . . . . . . . . 10 ⊢ (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀)) | |
| 20 | 9, 19 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (𝐼 + 1) ∈ (0...𝑀)) |
| 21 | 8, 20 | ffvelcdmd 7057 | . . . . . . . 8 ⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵)) |
| 22 | 7, 21 | sselid 3944 | . . . . . . 7 ⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ℝ*) |
| 23 | 22 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘(𝐼 + 1)) ∈ ℝ*) |
| 24 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) | |
| 25 | ioogtlb 45493 | . . . . . 6 ⊢ (((𝑄‘𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ* ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘𝐼) < 𝑥) | |
| 26 | 14, 23, 24, 25 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘𝐼) < 𝑥) |
| 27 | 2, 14, 15, 18, 26 | xrlelttrd 13120 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐴 < 𝑥) |
| 28 | iooltub 45508 | . . . . . 6 ⊢ (((𝑄‘𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ* ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 < (𝑄‘(𝐼 + 1))) | |
| 29 | 14, 23, 24, 28 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 < (𝑄‘(𝐼 + 1))) |
| 30 | iccleub 13362 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵)) → (𝑄‘(𝐼 + 1)) ≤ 𝐵) | |
| 31 | 1, 3, 21, 30 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ≤ 𝐵) |
| 32 | 31 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘(𝐼 + 1)) ≤ 𝐵) |
| 33 | 15, 23, 4, 29, 32 | xrltletrd 13121 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 < 𝐵) |
| 34 | 2, 4, 6, 27, 33 | eliood 45496 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ (𝐴(,)𝐵)) |
| 35 | 34 | ralrimiva 3125 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))𝑥 ∈ (𝐴(,)𝐵)) |
| 36 | dfss3 3935 | . 2 ⊢ (((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (𝐴(,)𝐵) ↔ ∀𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))𝑥 ∈ (𝐴(,)𝐵)) | |
| 37 | 35, 36 | sylibr 234 | 1 ⊢ (𝜑 → ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (𝐴(,)𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3914 class class class wbr 5107 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 0cc0 11068 1c1 11069 + caddc 11071 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 (,)cioo 13306 [,]cicc 13309 ...cfz 13468 ..^cfzo 13615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-ioo 13310 df-icc 13313 df-fz 13469 df-fzo 13616 |
| This theorem is referenced by: fourierdlem102 46206 fourierdlem114 46218 |
| Copyright terms: Public domain | W3C validator |