![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem27 | Structured version Visualization version GIF version |
Description: A partition open interval is a subset of the partitioned open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fourierdlem27.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
fourierdlem27.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
fourierdlem27.q | ⊢ (𝜑 → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) |
fourierdlem27.i | ⊢ (𝜑 → 𝐼 ∈ (0..^𝑀)) |
Ref | Expression |
---|---|
fourierdlem27 | ⊢ (𝜑 → ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (𝐴(,)𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fourierdlem27.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
2 | 1 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐴 ∈ ℝ*) |
3 | fourierdlem27.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
4 | 3 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐵 ∈ ℝ*) |
5 | elioore 12577 | . . . . 5 ⊢ (𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) → 𝑥 ∈ ℝ) | |
6 | 5 | adantl 474 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ℝ) |
7 | iccssxr 12628 | . . . . . . 7 ⊢ (𝐴[,]𝐵) ⊆ ℝ* | |
8 | fourierdlem27.q | . . . . . . . 8 ⊢ (𝜑 → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) | |
9 | fourierdlem27.i | . . . . . . . . 9 ⊢ (𝜑 → 𝐼 ∈ (0..^𝑀)) | |
10 | elfzofz 12862 | . . . . . . . . 9 ⊢ (𝐼 ∈ (0..^𝑀) → 𝐼 ∈ (0...𝑀)) | |
11 | 9, 10 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) |
12 | 8, 11 | ffvelrnd 6671 | . . . . . . 7 ⊢ (𝜑 → (𝑄‘𝐼) ∈ (𝐴[,]𝐵)) |
13 | 7, 12 | sseldi 3852 | . . . . . 6 ⊢ (𝜑 → (𝑄‘𝐼) ∈ ℝ*) |
14 | 13 | adantr 473 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘𝐼) ∈ ℝ*) |
15 | 6 | rexrd 10482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ℝ*) |
16 | iccgelb 12602 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝑄‘𝐼) ∈ (𝐴[,]𝐵)) → 𝐴 ≤ (𝑄‘𝐼)) | |
17 | 1, 3, 12, 16 | syl3anc 1351 | . . . . . 6 ⊢ (𝜑 → 𝐴 ≤ (𝑄‘𝐼)) |
18 | 17 | adantr 473 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐴 ≤ (𝑄‘𝐼)) |
19 | fzofzp1 12942 | . . . . . . . . . 10 ⊢ (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀)) | |
20 | 9, 19 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (𝐼 + 1) ∈ (0...𝑀)) |
21 | 8, 20 | ffvelrnd 6671 | . . . . . . . 8 ⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵)) |
22 | 7, 21 | sseldi 3852 | . . . . . . 7 ⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ∈ ℝ*) |
23 | 22 | adantr 473 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘(𝐼 + 1)) ∈ ℝ*) |
24 | simpr 477 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) | |
25 | ioogtlb 41147 | . . . . . 6 ⊢ (((𝑄‘𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ* ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘𝐼) < 𝑥) | |
26 | 14, 23, 24, 25 | syl3anc 1351 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘𝐼) < 𝑥) |
27 | 2, 14, 15, 18, 26 | xrlelttrd 12363 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝐴 < 𝑥) |
28 | iooltub 41163 | . . . . . 6 ⊢ (((𝑄‘𝐼) ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ ℝ* ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 < (𝑄‘(𝐼 + 1))) | |
29 | 14, 23, 24, 28 | syl3anc 1351 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 < (𝑄‘(𝐼 + 1))) |
30 | iccleub 12601 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝑄‘(𝐼 + 1)) ∈ (𝐴[,]𝐵)) → (𝑄‘(𝐼 + 1)) ≤ 𝐵) | |
31 | 1, 3, 21, 30 | syl3anc 1351 | . . . . . 6 ⊢ (𝜑 → (𝑄‘(𝐼 + 1)) ≤ 𝐵) |
32 | 31 | adantr 473 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → (𝑄‘(𝐼 + 1)) ≤ 𝐵) |
33 | 15, 23, 4, 29, 32 | xrltletrd 12364 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 < 𝐵) |
34 | 2, 4, 6, 27, 33 | eliood 41150 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))) → 𝑥 ∈ (𝐴(,)𝐵)) |
35 | 34 | ralrimiva 3126 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))𝑥 ∈ (𝐴(,)𝐵)) |
36 | dfss3 3843 | . 2 ⊢ (((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (𝐴(,)𝐵) ↔ ∀𝑥 ∈ ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1)))𝑥 ∈ (𝐴(,)𝐵)) | |
37 | 35, 36 | sylibr 226 | 1 ⊢ (𝜑 → ((𝑄‘𝐼)(,)(𝑄‘(𝐼 + 1))) ⊆ (𝐴(,)𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∈ wcel 2048 ∀wral 3082 ⊆ wss 3825 class class class wbr 4923 ⟶wf 6178 ‘cfv 6182 (class class class)co 6970 ℝcr 10326 0cc0 10327 1c1 10328 + caddc 10330 ℝ*cxr 10465 < clt 10466 ≤ cle 10467 (,)cioo 12547 [,]cicc 12550 ...cfz 12701 ..^cfzo 12842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7494 df-2nd 7495 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-er 8081 df-en 8299 df-dom 8300 df-sdom 8301 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-nn 11432 df-n0 11701 df-z 11787 df-uz 12052 df-ioo 12551 df-icc 12554 df-fz 12702 df-fzo 12843 |
This theorem is referenced by: fourierdlem102 41870 fourierdlem114 41882 |
Copyright terms: Public domain | W3C validator |