![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isosctrlem1 | Structured version Visualization version GIF version |
Description: Lemma for isosctr 26669. (Contributed by Saveliy Skresanov, 30-Dec-2016.) |
Ref | Expression |
---|---|
isosctrlem1 | ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≠ π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11164 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
2 | subcl 11456 | . . . . . . 7 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − 𝐴) ∈ ℂ) | |
3 | 1, 2 | mpan 687 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (1 − 𝐴) ∈ ℂ) |
4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (1 − 𝐴) ∈ ℂ) |
5 | subeq0 11483 | . . . . . . . . 9 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴)) | |
6 | 5 | notbid 318 | . . . . . . . 8 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (¬ (1 − 𝐴) = 0 ↔ ¬ 1 = 𝐴)) |
7 | 1, 6 | mpan 687 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (¬ (1 − 𝐴) = 0 ↔ ¬ 1 = 𝐴)) |
8 | 7 | biimpar 477 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → ¬ (1 − 𝐴) = 0) |
9 | 8 | neqned 2939 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (1 − 𝐴) ≠ 0) |
10 | 4, 9 | logcld 26421 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (log‘(1 − 𝐴)) ∈ ℂ) |
11 | 10 | imcld 15139 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ∈ ℝ) |
12 | 11 | 3adant2 1128 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ∈ ℝ) |
13 | 3 | 3ad2ant1 1130 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (1 − 𝐴) ∈ ℂ) |
14 | 9 | 3adant2 1128 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (1 − 𝐴) ≠ 0) |
15 | releabs 15265 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ≤ (abs‘𝐴)) | |
16 | 15 | adantr 480 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (ℜ‘𝐴) ≤ (abs‘𝐴)) |
17 | breq2 5142 | . . . . . . . . . 10 ⊢ ((abs‘𝐴) = 1 → ((ℜ‘𝐴) ≤ (abs‘𝐴) ↔ (ℜ‘𝐴) ≤ 1)) | |
18 | 17 | adantl 481 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → ((ℜ‘𝐴) ≤ (abs‘𝐴) ↔ (ℜ‘𝐴) ≤ 1)) |
19 | 16, 18 | mpbid 231 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (ℜ‘𝐴) ≤ 1) |
20 | recl 15054 | . . . . . . . . . . . 12 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) | |
21 | 20 | recnd 11239 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ) |
22 | 21 | subidd 11556 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℂ → ((ℜ‘𝐴) − (ℜ‘𝐴)) = 0) |
23 | 22 | adantr 480 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≤ 1) → ((ℜ‘𝐴) − (ℜ‘𝐴)) = 0) |
24 | simpl 482 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≤ 1) → 𝐴 ∈ ℂ) | |
25 | 24 | recld 15138 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≤ 1) → (ℜ‘𝐴) ∈ ℝ) |
26 | 1red 11212 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≤ 1) → 1 ∈ ℝ) | |
27 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≤ 1) → (ℜ‘𝐴) ≤ 1) | |
28 | 25, 26, 25, 27 | lesub1dd 11827 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≤ 1) → ((ℜ‘𝐴) − (ℜ‘𝐴)) ≤ (1 − (ℜ‘𝐴))) |
29 | 23, 28 | eqbrtrrd 5162 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≤ 1) → 0 ≤ (1 − (ℜ‘𝐴))) |
30 | 19, 29 | syldan 590 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → 0 ≤ (1 − (ℜ‘𝐴))) |
31 | resub 15071 | . . . . . . . . . 10 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (ℜ‘(1 − 𝐴)) = ((ℜ‘1) − (ℜ‘𝐴))) | |
32 | re1 15098 | . . . . . . . . . . 11 ⊢ (ℜ‘1) = 1 | |
33 | 32 | oveq1i 7411 | . . . . . . . . . 10 ⊢ ((ℜ‘1) − (ℜ‘𝐴)) = (1 − (ℜ‘𝐴)) |
34 | 31, 33 | eqtrdi 2780 | . . . . . . . . 9 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (ℜ‘(1 − 𝐴)) = (1 − (ℜ‘𝐴))) |
35 | 1, 34 | mpan 687 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (ℜ‘(1 − 𝐴)) = (1 − (ℜ‘𝐴))) |
36 | 35 | adantr 480 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (ℜ‘(1 − 𝐴)) = (1 − (ℜ‘𝐴))) |
37 | 30, 36 | breqtrrd 5166 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → 0 ≤ (ℜ‘(1 − 𝐴))) |
38 | 37 | 3adant3 1129 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → 0 ≤ (ℜ‘(1 − 𝐴))) |
39 | neghalfpirx 26318 | . . . . . 6 ⊢ -(π / 2) ∈ ℝ* | |
40 | halfpire 26316 | . . . . . . 7 ⊢ (π / 2) ∈ ℝ | |
41 | 40 | rexri 11269 | . . . . . 6 ⊢ (π / 2) ∈ ℝ* |
42 | argrege0 26461 | . . . . . 6 ⊢ (((1 − 𝐴) ∈ ℂ ∧ (1 − 𝐴) ≠ 0 ∧ 0 ≤ (ℜ‘(1 − 𝐴))) → (ℑ‘(log‘(1 − 𝐴))) ∈ (-(π / 2)[,](π / 2))) | |
43 | iccleub 13376 | . . . . . 6 ⊢ ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ* ∧ (ℑ‘(log‘(1 − 𝐴))) ∈ (-(π / 2)[,](π / 2))) → (ℑ‘(log‘(1 − 𝐴))) ≤ (π / 2)) | |
44 | 39, 41, 42, 43 | mp3an12i 1461 | . . . . 5 ⊢ (((1 − 𝐴) ∈ ℂ ∧ (1 − 𝐴) ≠ 0 ∧ 0 ≤ (ℜ‘(1 − 𝐴))) → (ℑ‘(log‘(1 − 𝐴))) ≤ (π / 2)) |
45 | 13, 14, 38, 44 | syl3anc 1368 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≤ (π / 2)) |
46 | pirp 26313 | . . . . 5 ⊢ π ∈ ℝ+ | |
47 | rphalflt 13000 | . . . . 5 ⊢ (π ∈ ℝ+ → (π / 2) < π) | |
48 | 46, 47 | ax-mp 5 | . . . 4 ⊢ (π / 2) < π |
49 | 45, 48 | jctir 520 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → ((ℑ‘(log‘(1 − 𝐴))) ≤ (π / 2) ∧ (π / 2) < π)) |
50 | pire 26310 | . . . . . . 7 ⊢ π ∈ ℝ | |
51 | 50 | a1i 11 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → π ∈ ℝ) |
52 | 51 | rehalfcld 12456 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (π / 2) ∈ ℝ) |
53 | lelttr 11301 | . . . . 5 ⊢ (((ℑ‘(log‘(1 − 𝐴))) ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ π ∈ ℝ) → (((ℑ‘(log‘(1 − 𝐴))) ≤ (π / 2) ∧ (π / 2) < π) → (ℑ‘(log‘(1 − 𝐴))) < π)) | |
54 | 11, 52, 51, 53 | syl3anc 1368 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (((ℑ‘(log‘(1 − 𝐴))) ≤ (π / 2) ∧ (π / 2) < π) → (ℑ‘(log‘(1 − 𝐴))) < π)) |
55 | 54 | 3adant2 1128 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (((ℑ‘(log‘(1 − 𝐴))) ≤ (π / 2) ∧ (π / 2) < π) → (ℑ‘(log‘(1 − 𝐴))) < π)) |
56 | 49, 55 | mpd 15 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) < π) |
57 | 12, 56 | ltned 11347 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≠ π) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 class class class wbr 5138 ‘cfv 6533 (class class class)co 7401 ℂcc 11104 ℝcr 11105 0cc0 11106 1c1 11107 ℝ*cxr 11244 < clt 11245 ≤ cle 11246 − cmin 11441 -cneg 11442 / cdiv 11868 2c2 12264 ℝ+crp 12971 [,]cicc 13324 ℜcre 15041 ℑcim 15042 abscabs 15178 πcpi 16007 logclog 26405 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-om 7849 df-1st 7968 df-2nd 7969 df-supp 8141 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-er 8699 df-map 8818 df-pm 8819 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-fi 9402 df-sup 9433 df-inf 9434 df-oi 9501 df-card 9930 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-7 12277 df-8 12278 df-9 12279 df-n0 12470 df-z 12556 df-dec 12675 df-uz 12820 df-q 12930 df-rp 12972 df-xneg 13089 df-xadd 13090 df-xmul 13091 df-ioo 13325 df-ioc 13326 df-ico 13327 df-icc 13328 df-fz 13482 df-fzo 13625 df-fl 13754 df-mod 13832 df-seq 13964 df-exp 14025 df-fac 14231 df-bc 14260 df-hash 14288 df-shft 15011 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-limsup 15412 df-clim 15429 df-rlim 15430 df-sum 15630 df-ef 16008 df-sin 16010 df-cos 16011 df-pi 16013 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17367 df-topn 17368 df-0g 17386 df-gsum 17387 df-topgen 17388 df-pt 17389 df-prds 17392 df-xrs 17447 df-qtop 17452 df-imas 17453 df-xps 17455 df-mre 17529 df-mrc 17530 df-acs 17532 df-mgm 18563 df-sgrp 18642 df-mnd 18658 df-submnd 18704 df-mulg 18986 df-cntz 19223 df-cmn 19692 df-psmet 21220 df-xmet 21221 df-met 21222 df-bl 21223 df-mopn 21224 df-fbas 21225 df-fg 21226 df-cnfld 21229 df-top 22718 df-topon 22735 df-topsp 22757 df-bases 22771 df-cld 22845 df-ntr 22846 df-cls 22847 df-nei 22924 df-lp 22962 df-perf 22963 df-cn 23053 df-cnp 23054 df-haus 23141 df-tx 23388 df-hmeo 23581 df-fil 23672 df-fm 23764 df-flim 23765 df-flf 23766 df-xms 24148 df-ms 24149 df-tms 24150 df-cncf 24720 df-limc 25717 df-dv 25718 df-log 26407 |
This theorem is referenced by: isosctrlem2 26667 |
Copyright terms: Public domain | W3C validator |