| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isosctrlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for isosctr 26864. (Contributed by Saveliy Skresanov, 30-Dec-2016.) |
| Ref | Expression |
|---|---|
| isosctrlem1 | ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≠ π) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11213 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 2 | subcl 11507 | . . . . . . 7 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − 𝐴) ∈ ℂ) | |
| 3 | 1, 2 | mpan 690 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (1 − 𝐴) ∈ ℂ) |
| 4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (1 − 𝐴) ∈ ℂ) |
| 5 | subeq0 11535 | . . . . . . . . 9 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴)) | |
| 6 | 5 | notbid 318 | . . . . . . . 8 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (¬ (1 − 𝐴) = 0 ↔ ¬ 1 = 𝐴)) |
| 7 | 1, 6 | mpan 690 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (¬ (1 − 𝐴) = 0 ↔ ¬ 1 = 𝐴)) |
| 8 | 7 | biimpar 477 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → ¬ (1 − 𝐴) = 0) |
| 9 | 8 | neqned 2947 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (1 − 𝐴) ≠ 0) |
| 10 | 4, 9 | logcld 26612 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (log‘(1 − 𝐴)) ∈ ℂ) |
| 11 | 10 | imcld 15234 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ∈ ℝ) |
| 12 | 11 | 3adant2 1132 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ∈ ℝ) |
| 13 | 3 | 3ad2ant1 1134 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (1 − 𝐴) ∈ ℂ) |
| 14 | 9 | 3adant2 1132 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (1 − 𝐴) ≠ 0) |
| 15 | releabs 15360 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ≤ (abs‘𝐴)) | |
| 16 | 15 | adantr 480 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (ℜ‘𝐴) ≤ (abs‘𝐴)) |
| 17 | breq2 5147 | . . . . . . . . . 10 ⊢ ((abs‘𝐴) = 1 → ((ℜ‘𝐴) ≤ (abs‘𝐴) ↔ (ℜ‘𝐴) ≤ 1)) | |
| 18 | 17 | adantl 481 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → ((ℜ‘𝐴) ≤ (abs‘𝐴) ↔ (ℜ‘𝐴) ≤ 1)) |
| 19 | 16, 18 | mpbid 232 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (ℜ‘𝐴) ≤ 1) |
| 20 | recl 15149 | . . . . . . . . . . . 12 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) | |
| 21 | 20 | recnd 11289 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ) |
| 22 | 21 | subidd 11608 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℂ → ((ℜ‘𝐴) − (ℜ‘𝐴)) = 0) |
| 23 | 22 | adantr 480 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≤ 1) → ((ℜ‘𝐴) − (ℜ‘𝐴)) = 0) |
| 24 | simpl 482 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≤ 1) → 𝐴 ∈ ℂ) | |
| 25 | 24 | recld 15233 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≤ 1) → (ℜ‘𝐴) ∈ ℝ) |
| 26 | 1red 11262 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≤ 1) → 1 ∈ ℝ) | |
| 27 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≤ 1) → (ℜ‘𝐴) ≤ 1) | |
| 28 | 25, 26, 25, 27 | lesub1dd 11879 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≤ 1) → ((ℜ‘𝐴) − (ℜ‘𝐴)) ≤ (1 − (ℜ‘𝐴))) |
| 29 | 23, 28 | eqbrtrrd 5167 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≤ 1) → 0 ≤ (1 − (ℜ‘𝐴))) |
| 30 | 19, 29 | syldan 591 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → 0 ≤ (1 − (ℜ‘𝐴))) |
| 31 | resub 15166 | . . . . . . . . . 10 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (ℜ‘(1 − 𝐴)) = ((ℜ‘1) − (ℜ‘𝐴))) | |
| 32 | re1 15193 | . . . . . . . . . . 11 ⊢ (ℜ‘1) = 1 | |
| 33 | 32 | oveq1i 7441 | . . . . . . . . . 10 ⊢ ((ℜ‘1) − (ℜ‘𝐴)) = (1 − (ℜ‘𝐴)) |
| 34 | 31, 33 | eqtrdi 2793 | . . . . . . . . 9 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (ℜ‘(1 − 𝐴)) = (1 − (ℜ‘𝐴))) |
| 35 | 1, 34 | mpan 690 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (ℜ‘(1 − 𝐴)) = (1 − (ℜ‘𝐴))) |
| 36 | 35 | adantr 480 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (ℜ‘(1 − 𝐴)) = (1 − (ℜ‘𝐴))) |
| 37 | 30, 36 | breqtrrd 5171 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → 0 ≤ (ℜ‘(1 − 𝐴))) |
| 38 | 37 | 3adant3 1133 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → 0 ≤ (ℜ‘(1 − 𝐴))) |
| 39 | neghalfpirx 26508 | . . . . . 6 ⊢ -(π / 2) ∈ ℝ* | |
| 40 | halfpire 26506 | . . . . . . 7 ⊢ (π / 2) ∈ ℝ | |
| 41 | 40 | rexri 11319 | . . . . . 6 ⊢ (π / 2) ∈ ℝ* |
| 42 | argrege0 26653 | . . . . . 6 ⊢ (((1 − 𝐴) ∈ ℂ ∧ (1 − 𝐴) ≠ 0 ∧ 0 ≤ (ℜ‘(1 − 𝐴))) → (ℑ‘(log‘(1 − 𝐴))) ∈ (-(π / 2)[,](π / 2))) | |
| 43 | iccleub 13442 | . . . . . 6 ⊢ ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ* ∧ (ℑ‘(log‘(1 − 𝐴))) ∈ (-(π / 2)[,](π / 2))) → (ℑ‘(log‘(1 − 𝐴))) ≤ (π / 2)) | |
| 44 | 39, 41, 42, 43 | mp3an12i 1467 | . . . . 5 ⊢ (((1 − 𝐴) ∈ ℂ ∧ (1 − 𝐴) ≠ 0 ∧ 0 ≤ (ℜ‘(1 − 𝐴))) → (ℑ‘(log‘(1 − 𝐴))) ≤ (π / 2)) |
| 45 | 13, 14, 38, 44 | syl3anc 1373 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≤ (π / 2)) |
| 46 | pirp 26503 | . . . . 5 ⊢ π ∈ ℝ+ | |
| 47 | rphalflt 13064 | . . . . 5 ⊢ (π ∈ ℝ+ → (π / 2) < π) | |
| 48 | 46, 47 | ax-mp 5 | . . . 4 ⊢ (π / 2) < π |
| 49 | 45, 48 | jctir 520 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → ((ℑ‘(log‘(1 − 𝐴))) ≤ (π / 2) ∧ (π / 2) < π)) |
| 50 | pire 26500 | . . . . . . 7 ⊢ π ∈ ℝ | |
| 51 | 50 | a1i 11 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → π ∈ ℝ) |
| 52 | 51 | rehalfcld 12513 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (π / 2) ∈ ℝ) |
| 53 | lelttr 11351 | . . . . 5 ⊢ (((ℑ‘(log‘(1 − 𝐴))) ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ π ∈ ℝ) → (((ℑ‘(log‘(1 − 𝐴))) ≤ (π / 2) ∧ (π / 2) < π) → (ℑ‘(log‘(1 − 𝐴))) < π)) | |
| 54 | 11, 52, 51, 53 | syl3anc 1373 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (((ℑ‘(log‘(1 − 𝐴))) ≤ (π / 2) ∧ (π / 2) < π) → (ℑ‘(log‘(1 − 𝐴))) < π)) |
| 55 | 54 | 3adant2 1132 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (((ℑ‘(log‘(1 − 𝐴))) ≤ (π / 2) ∧ (π / 2) < π) → (ℑ‘(log‘(1 − 𝐴))) < π)) |
| 56 | 49, 55 | mpd 15 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) < π) |
| 57 | 12, 56 | ltned 11397 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≠ π) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 ℂcc 11153 ℝcr 11154 0cc0 11155 1c1 11156 ℝ*cxr 11294 < clt 11295 ≤ cle 11296 − cmin 11492 -cneg 11493 / cdiv 11920 2c2 12321 ℝ+crp 13034 [,]cicc 13390 ℜcre 15136 ℑcim 15137 abscabs 15273 πcpi 16102 logclog 26596 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 ax-addf 11234 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-pm 8869 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-fi 9451 df-sup 9482 df-inf 9483 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-q 12991 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-ioo 13391 df-ioc 13392 df-ico 13393 df-icc 13394 df-fz 13548 df-fzo 13695 df-fl 13832 df-mod 13910 df-seq 14043 df-exp 14103 df-fac 14313 df-bc 14342 df-hash 14370 df-shft 15106 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-limsup 15507 df-clim 15524 df-rlim 15525 df-sum 15723 df-ef 16103 df-sin 16105 df-cos 16106 df-pi 16108 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-rest 17467 df-topn 17468 df-0g 17486 df-gsum 17487 df-topgen 17488 df-pt 17489 df-prds 17492 df-xrs 17547 df-qtop 17552 df-imas 17553 df-xps 17555 df-mre 17629 df-mrc 17630 df-acs 17632 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-submnd 18797 df-mulg 19086 df-cntz 19335 df-cmn 19800 df-psmet 21356 df-xmet 21357 df-met 21358 df-bl 21359 df-mopn 21360 df-fbas 21361 df-fg 21362 df-cnfld 21365 df-top 22900 df-topon 22917 df-topsp 22939 df-bases 22953 df-cld 23027 df-ntr 23028 df-cls 23029 df-nei 23106 df-lp 23144 df-perf 23145 df-cn 23235 df-cnp 23236 df-haus 23323 df-tx 23570 df-hmeo 23763 df-fil 23854 df-fm 23946 df-flim 23947 df-flf 23948 df-xms 24330 df-ms 24331 df-tms 24332 df-cncf 24904 df-limc 25901 df-dv 25902 df-log 26598 |
| This theorem is referenced by: isosctrlem2 26862 |
| Copyright terms: Public domain | W3C validator |