Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isosctrlem1 | Structured version Visualization version GIF version |
Description: Lemma for isosctr 26016. (Contributed by Saveliy Skresanov, 30-Dec-2016.) |
Ref | Expression |
---|---|
isosctrlem1 | ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≠ π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 10975 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
2 | subcl 11266 | . . . . . . 7 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − 𝐴) ∈ ℂ) | |
3 | 1, 2 | mpan 688 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (1 − 𝐴) ∈ ℂ) |
4 | 3 | adantr 482 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (1 − 𝐴) ∈ ℂ) |
5 | subeq0 11293 | . . . . . . . . 9 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴)) | |
6 | 5 | notbid 318 | . . . . . . . 8 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (¬ (1 − 𝐴) = 0 ↔ ¬ 1 = 𝐴)) |
7 | 1, 6 | mpan 688 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (¬ (1 − 𝐴) = 0 ↔ ¬ 1 = 𝐴)) |
8 | 7 | biimpar 479 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → ¬ (1 − 𝐴) = 0) |
9 | 8 | neqned 2948 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (1 − 𝐴) ≠ 0) |
10 | 4, 9 | logcld 25771 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (log‘(1 − 𝐴)) ∈ ℂ) |
11 | 10 | imcld 14951 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ∈ ℝ) |
12 | 11 | 3adant2 1131 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ∈ ℝ) |
13 | 3 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (1 − 𝐴) ∈ ℂ) |
14 | 9 | 3adant2 1131 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (1 − 𝐴) ≠ 0) |
15 | releabs 15078 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ≤ (abs‘𝐴)) | |
16 | 15 | adantr 482 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (ℜ‘𝐴) ≤ (abs‘𝐴)) |
17 | breq2 5085 | . . . . . . . . . 10 ⊢ ((abs‘𝐴) = 1 → ((ℜ‘𝐴) ≤ (abs‘𝐴) ↔ (ℜ‘𝐴) ≤ 1)) | |
18 | 17 | adantl 483 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → ((ℜ‘𝐴) ≤ (abs‘𝐴) ↔ (ℜ‘𝐴) ≤ 1)) |
19 | 16, 18 | mpbid 231 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (ℜ‘𝐴) ≤ 1) |
20 | recl 14866 | . . . . . . . . . . . 12 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) | |
21 | 20 | recnd 11049 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ) |
22 | 21 | subidd 11366 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℂ → ((ℜ‘𝐴) − (ℜ‘𝐴)) = 0) |
23 | 22 | adantr 482 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≤ 1) → ((ℜ‘𝐴) − (ℜ‘𝐴)) = 0) |
24 | simpl 484 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≤ 1) → 𝐴 ∈ ℂ) | |
25 | 24 | recld 14950 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≤ 1) → (ℜ‘𝐴) ∈ ℝ) |
26 | 1red 11022 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≤ 1) → 1 ∈ ℝ) | |
27 | simpr 486 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≤ 1) → (ℜ‘𝐴) ≤ 1) | |
28 | 25, 26, 25, 27 | lesub1dd 11637 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≤ 1) → ((ℜ‘𝐴) − (ℜ‘𝐴)) ≤ (1 − (ℜ‘𝐴))) |
29 | 23, 28 | eqbrtrrd 5105 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≤ 1) → 0 ≤ (1 − (ℜ‘𝐴))) |
30 | 19, 29 | syldan 592 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → 0 ≤ (1 − (ℜ‘𝐴))) |
31 | resub 14883 | . . . . . . . . . 10 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (ℜ‘(1 − 𝐴)) = ((ℜ‘1) − (ℜ‘𝐴))) | |
32 | re1 14910 | . . . . . . . . . . 11 ⊢ (ℜ‘1) = 1 | |
33 | 32 | oveq1i 7317 | . . . . . . . . . 10 ⊢ ((ℜ‘1) − (ℜ‘𝐴)) = (1 − (ℜ‘𝐴)) |
34 | 31, 33 | eqtrdi 2792 | . . . . . . . . 9 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (ℜ‘(1 − 𝐴)) = (1 − (ℜ‘𝐴))) |
35 | 1, 34 | mpan 688 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (ℜ‘(1 − 𝐴)) = (1 − (ℜ‘𝐴))) |
36 | 35 | adantr 482 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (ℜ‘(1 − 𝐴)) = (1 − (ℜ‘𝐴))) |
37 | 30, 36 | breqtrrd 5109 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → 0 ≤ (ℜ‘(1 − 𝐴))) |
38 | 37 | 3adant3 1132 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → 0 ≤ (ℜ‘(1 − 𝐴))) |
39 | neghalfpirx 25668 | . . . . . 6 ⊢ -(π / 2) ∈ ℝ* | |
40 | halfpire 25666 | . . . . . . 7 ⊢ (π / 2) ∈ ℝ | |
41 | 40 | rexri 11079 | . . . . . 6 ⊢ (π / 2) ∈ ℝ* |
42 | argrege0 25811 | . . . . . 6 ⊢ (((1 − 𝐴) ∈ ℂ ∧ (1 − 𝐴) ≠ 0 ∧ 0 ≤ (ℜ‘(1 − 𝐴))) → (ℑ‘(log‘(1 − 𝐴))) ∈ (-(π / 2)[,](π / 2))) | |
43 | iccleub 13180 | . . . . . 6 ⊢ ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ* ∧ (ℑ‘(log‘(1 − 𝐴))) ∈ (-(π / 2)[,](π / 2))) → (ℑ‘(log‘(1 − 𝐴))) ≤ (π / 2)) | |
44 | 39, 41, 42, 43 | mp3an12i 1465 | . . . . 5 ⊢ (((1 − 𝐴) ∈ ℂ ∧ (1 − 𝐴) ≠ 0 ∧ 0 ≤ (ℜ‘(1 − 𝐴))) → (ℑ‘(log‘(1 − 𝐴))) ≤ (π / 2)) |
45 | 13, 14, 38, 44 | syl3anc 1371 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≤ (π / 2)) |
46 | pirp 25663 | . . . . 5 ⊢ π ∈ ℝ+ | |
47 | rphalflt 12805 | . . . . 5 ⊢ (π ∈ ℝ+ → (π / 2) < π) | |
48 | 46, 47 | ax-mp 5 | . . . 4 ⊢ (π / 2) < π |
49 | 45, 48 | jctir 522 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → ((ℑ‘(log‘(1 − 𝐴))) ≤ (π / 2) ∧ (π / 2) < π)) |
50 | pire 25660 | . . . . . . 7 ⊢ π ∈ ℝ | |
51 | 50 | a1i 11 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → π ∈ ℝ) |
52 | 51 | rehalfcld 12266 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (π / 2) ∈ ℝ) |
53 | lelttr 11111 | . . . . 5 ⊢ (((ℑ‘(log‘(1 − 𝐴))) ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ π ∈ ℝ) → (((ℑ‘(log‘(1 − 𝐴))) ≤ (π / 2) ∧ (π / 2) < π) → (ℑ‘(log‘(1 − 𝐴))) < π)) | |
54 | 11, 52, 51, 53 | syl3anc 1371 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (((ℑ‘(log‘(1 − 𝐴))) ≤ (π / 2) ∧ (π / 2) < π) → (ℑ‘(log‘(1 − 𝐴))) < π)) |
55 | 54 | 3adant2 1131 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (((ℑ‘(log‘(1 − 𝐴))) ≤ (π / 2) ∧ (π / 2) < π) → (ℑ‘(log‘(1 − 𝐴))) < π)) |
56 | 49, 55 | mpd 15 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) < π) |
57 | 12, 56 | ltned 11157 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≠ π) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 class class class wbr 5081 ‘cfv 6458 (class class class)co 7307 ℂcc 10915 ℝcr 10916 0cc0 10917 1c1 10918 ℝ*cxr 11054 < clt 11055 ≤ cle 11056 − cmin 11251 -cneg 11252 / cdiv 11678 2c2 12074 ℝ+crp 12776 [,]cicc 13128 ℜcre 14853 ℑcim 14854 abscabs 14990 πcpi 15821 logclog 25755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9443 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 ax-pre-sup 10995 ax-addf 10996 ax-mulf 10997 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-iin 4934 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-of 7565 df-om 7745 df-1st 7863 df-2nd 7864 df-supp 8009 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-2o 8329 df-er 8529 df-map 8648 df-pm 8649 df-ixp 8717 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-fsupp 9173 df-fi 9214 df-sup 9245 df-inf 9246 df-oi 9313 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-9 12089 df-n0 12280 df-z 12366 df-dec 12484 df-uz 12629 df-q 12735 df-rp 12777 df-xneg 12894 df-xadd 12895 df-xmul 12896 df-ioo 13129 df-ioc 13130 df-ico 13131 df-icc 13132 df-fz 13286 df-fzo 13429 df-fl 13558 df-mod 13636 df-seq 13768 df-exp 13829 df-fac 14034 df-bc 14063 df-hash 14091 df-shft 14823 df-cj 14855 df-re 14856 df-im 14857 df-sqrt 14991 df-abs 14992 df-limsup 15225 df-clim 15242 df-rlim 15243 df-sum 15443 df-ef 15822 df-sin 15824 df-cos 15825 df-pi 15827 df-struct 16893 df-sets 16910 df-slot 16928 df-ndx 16940 df-base 16958 df-ress 16987 df-plusg 17020 df-mulr 17021 df-starv 17022 df-sca 17023 df-vsca 17024 df-ip 17025 df-tset 17026 df-ple 17027 df-ds 17029 df-unif 17030 df-hom 17031 df-cco 17032 df-rest 17178 df-topn 17179 df-0g 17197 df-gsum 17198 df-topgen 17199 df-pt 17200 df-prds 17203 df-xrs 17258 df-qtop 17263 df-imas 17264 df-xps 17266 df-mre 17340 df-mrc 17341 df-acs 17343 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-submnd 18476 df-mulg 18746 df-cntz 18968 df-cmn 19433 df-psmet 20634 df-xmet 20635 df-met 20636 df-bl 20637 df-mopn 20638 df-fbas 20639 df-fg 20640 df-cnfld 20643 df-top 22088 df-topon 22105 df-topsp 22127 df-bases 22141 df-cld 22215 df-ntr 22216 df-cls 22217 df-nei 22294 df-lp 22332 df-perf 22333 df-cn 22423 df-cnp 22424 df-haus 22511 df-tx 22758 df-hmeo 22951 df-fil 23042 df-fm 23134 df-flim 23135 df-flf 23136 df-xms 23518 df-ms 23519 df-tms 23520 df-cncf 24086 df-limc 25075 df-dv 25076 df-log 25757 |
This theorem is referenced by: isosctrlem2 26014 |
Copyright terms: Public domain | W3C validator |