MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isosctrlem1 Structured version   Visualization version   GIF version

Theorem isosctrlem1 26666
Description: Lemma for isosctr 26669. (Contributed by Saveliy Skresanov, 30-Dec-2016.)
Assertion
Ref Expression
isosctrlem1 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≠ π)

Proof of Theorem isosctrlem1
StepHypRef Expression
1 ax-1cn 11164 . . . . . . 7 1 ∈ ℂ
2 subcl 11456 . . . . . . 7 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − 𝐴) ∈ ℂ)
31, 2mpan 687 . . . . . 6 (𝐴 ∈ ℂ → (1 − 𝐴) ∈ ℂ)
43adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (1 − 𝐴) ∈ ℂ)
5 subeq0 11483 . . . . . . . . 9 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
65notbid 318 . . . . . . . 8 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (¬ (1 − 𝐴) = 0 ↔ ¬ 1 = 𝐴))
71, 6mpan 687 . . . . . . 7 (𝐴 ∈ ℂ → (¬ (1 − 𝐴) = 0 ↔ ¬ 1 = 𝐴))
87biimpar 477 . . . . . 6 ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → ¬ (1 − 𝐴) = 0)
98neqned 2939 . . . . 5 ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (1 − 𝐴) ≠ 0)
104, 9logcld 26421 . . . 4 ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (log‘(1 − 𝐴)) ∈ ℂ)
1110imcld 15139 . . 3 ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ∈ ℝ)
12113adant2 1128 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ∈ ℝ)
1333ad2ant1 1130 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (1 − 𝐴) ∈ ℂ)
1493adant2 1128 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (1 − 𝐴) ≠ 0)
15 releabs 15265 . . . . . . . . . 10 (𝐴 ∈ ℂ → (ℜ‘𝐴) ≤ (abs‘𝐴))
1615adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (ℜ‘𝐴) ≤ (abs‘𝐴))
17 breq2 5142 . . . . . . . . . 10 ((abs‘𝐴) = 1 → ((ℜ‘𝐴) ≤ (abs‘𝐴) ↔ (ℜ‘𝐴) ≤ 1))
1817adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → ((ℜ‘𝐴) ≤ (abs‘𝐴) ↔ (ℜ‘𝐴) ≤ 1))
1916, 18mpbid 231 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (ℜ‘𝐴) ≤ 1)
20 recl 15054 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
2120recnd 11239 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
2221subidd 11556 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((ℜ‘𝐴) − (ℜ‘𝐴)) = 0)
2322adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≤ 1) → ((ℜ‘𝐴) − (ℜ‘𝐴)) = 0)
24 simpl 482 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≤ 1) → 𝐴 ∈ ℂ)
2524recld 15138 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≤ 1) → (ℜ‘𝐴) ∈ ℝ)
26 1red 11212 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≤ 1) → 1 ∈ ℝ)
27 simpr 484 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≤ 1) → (ℜ‘𝐴) ≤ 1)
2825, 26, 25, 27lesub1dd 11827 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≤ 1) → ((ℜ‘𝐴) − (ℜ‘𝐴)) ≤ (1 − (ℜ‘𝐴)))
2923, 28eqbrtrrd 5162 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≤ 1) → 0 ≤ (1 − (ℜ‘𝐴)))
3019, 29syldan 590 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → 0 ≤ (1 − (ℜ‘𝐴)))
31 resub 15071 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (ℜ‘(1 − 𝐴)) = ((ℜ‘1) − (ℜ‘𝐴)))
32 re1 15098 . . . . . . . . . . 11 (ℜ‘1) = 1
3332oveq1i 7411 . . . . . . . . . 10 ((ℜ‘1) − (ℜ‘𝐴)) = (1 − (ℜ‘𝐴))
3431, 33eqtrdi 2780 . . . . . . . . 9 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (ℜ‘(1 − 𝐴)) = (1 − (ℜ‘𝐴)))
351, 34mpan 687 . . . . . . . 8 (𝐴 ∈ ℂ → (ℜ‘(1 − 𝐴)) = (1 − (ℜ‘𝐴)))
3635adantr 480 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → (ℜ‘(1 − 𝐴)) = (1 − (ℜ‘𝐴)))
3730, 36breqtrrd 5166 . . . . . 6 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1) → 0 ≤ (ℜ‘(1 − 𝐴)))
38373adant3 1129 . . . . 5 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → 0 ≤ (ℜ‘(1 − 𝐴)))
39 neghalfpirx 26318 . . . . . 6 -(π / 2) ∈ ℝ*
40 halfpire 26316 . . . . . . 7 (π / 2) ∈ ℝ
4140rexri 11269 . . . . . 6 (π / 2) ∈ ℝ*
42 argrege0 26461 . . . . . 6 (((1 − 𝐴) ∈ ℂ ∧ (1 − 𝐴) ≠ 0 ∧ 0 ≤ (ℜ‘(1 − 𝐴))) → (ℑ‘(log‘(1 − 𝐴))) ∈ (-(π / 2)[,](π / 2)))
43 iccleub 13376 . . . . . 6 ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ* ∧ (ℑ‘(log‘(1 − 𝐴))) ∈ (-(π / 2)[,](π / 2))) → (ℑ‘(log‘(1 − 𝐴))) ≤ (π / 2))
4439, 41, 42, 43mp3an12i 1461 . . . . 5 (((1 − 𝐴) ∈ ℂ ∧ (1 − 𝐴) ≠ 0 ∧ 0 ≤ (ℜ‘(1 − 𝐴))) → (ℑ‘(log‘(1 − 𝐴))) ≤ (π / 2))
4513, 14, 38, 44syl3anc 1368 . . . 4 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≤ (π / 2))
46 pirp 26313 . . . . 5 π ∈ ℝ+
47 rphalflt 13000 . . . . 5 (π ∈ ℝ+ → (π / 2) < π)
4846, 47ax-mp 5 . . . 4 (π / 2) < π
4945, 48jctir 520 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → ((ℑ‘(log‘(1 − 𝐴))) ≤ (π / 2) ∧ (π / 2) < π))
50 pire 26310 . . . . . . 7 π ∈ ℝ
5150a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → π ∈ ℝ)
5251rehalfcld 12456 . . . . 5 ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (π / 2) ∈ ℝ)
53 lelttr 11301 . . . . 5 (((ℑ‘(log‘(1 − 𝐴))) ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ π ∈ ℝ) → (((ℑ‘(log‘(1 − 𝐴))) ≤ (π / 2) ∧ (π / 2) < π) → (ℑ‘(log‘(1 − 𝐴))) < π))
5411, 52, 51, 53syl3anc 1368 . . . 4 ((𝐴 ∈ ℂ ∧ ¬ 1 = 𝐴) → (((ℑ‘(log‘(1 − 𝐴))) ≤ (π / 2) ∧ (π / 2) < π) → (ℑ‘(log‘(1 − 𝐴))) < π))
55543adant2 1128 . . 3 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (((ℑ‘(log‘(1 − 𝐴))) ≤ (π / 2) ∧ (π / 2) < π) → (ℑ‘(log‘(1 − 𝐴))) < π))
5649, 55mpd 15 . 2 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) < π)
5712, 56ltned 11347 1 ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≠ π)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wne 2932   class class class wbr 5138  cfv 6533  (class class class)co 7401  cc 11104  cr 11105  0cc0 11106  1c1 11107  *cxr 11244   < clt 11245  cle 11246  cmin 11441  -cneg 11442   / cdiv 11868  2c2 12264  +crp 12971  [,]cicc 13324  cre 15041  cim 15042  abscabs 15178  πcpi 16007  logclog 26405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-om 7849  df-1st 7968  df-2nd 7969  df-supp 8141  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-z 12556  df-dec 12675  df-uz 12820  df-q 12930  df-rp 12972  df-xneg 13089  df-xadd 13090  df-xmul 13091  df-ioo 13325  df-ioc 13326  df-ico 13327  df-icc 13328  df-fz 13482  df-fzo 13625  df-fl 13754  df-mod 13832  df-seq 13964  df-exp 14025  df-fac 14231  df-bc 14260  df-hash 14288  df-shft 15011  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-limsup 15412  df-clim 15429  df-rlim 15430  df-sum 15630  df-ef 16008  df-sin 16010  df-cos 16011  df-pi 16013  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17367  df-topn 17368  df-0g 17386  df-gsum 17387  df-topgen 17388  df-pt 17389  df-prds 17392  df-xrs 17447  df-qtop 17452  df-imas 17453  df-xps 17455  df-mre 17529  df-mrc 17530  df-acs 17532  df-mgm 18563  df-sgrp 18642  df-mnd 18658  df-submnd 18704  df-mulg 18986  df-cntz 19223  df-cmn 19692  df-psmet 21220  df-xmet 21221  df-met 21222  df-bl 21223  df-mopn 21224  df-fbas 21225  df-fg 21226  df-cnfld 21229  df-top 22718  df-topon 22735  df-topsp 22757  df-bases 22771  df-cld 22845  df-ntr 22846  df-cls 22847  df-nei 22924  df-lp 22962  df-perf 22963  df-cn 23053  df-cnp 23054  df-haus 23141  df-tx 23388  df-hmeo 23581  df-fil 23672  df-fm 23764  df-flim 23765  df-flf 23766  df-xms 24148  df-ms 24149  df-tms 24150  df-cncf 24720  df-limc 25717  df-dv 25718  df-log 26407
This theorem is referenced by:  isosctrlem2  26667
  Copyright terms: Public domain W3C validator