![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imsdval2 | Structured version Visualization version GIF version |
Description: Value of the distance function of the induced metric of a normed complex vector space. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 28-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
imsdval2.1 | β’ π = (BaseSetβπ) |
imsdval2.2 | β’ πΊ = ( +π£ βπ) |
imsdval2.4 | β’ π = ( Β·π OLD βπ) |
imsdval2.6 | β’ π = (normCVβπ) |
imsdval2.8 | β’ π· = (IndMetβπ) |
Ref | Expression |
---|---|
imsdval2 | β’ ((π β NrmCVec β§ π΄ β π β§ π΅ β π) β (π΄π·π΅) = (πβ(π΄πΊ(-1ππ΅)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imsdval2.1 | . . 3 β’ π = (BaseSetβπ) | |
2 | eqid 2733 | . . 3 β’ ( βπ£ βπ) = ( βπ£ βπ) | |
3 | imsdval2.6 | . . 3 β’ π = (normCVβπ) | |
4 | imsdval2.8 | . . 3 β’ π· = (IndMetβπ) | |
5 | 1, 2, 3, 4 | imsdval 29939 | . 2 β’ ((π β NrmCVec β§ π΄ β π β§ π΅ β π) β (π΄π·π΅) = (πβ(π΄( βπ£ βπ)π΅))) |
6 | imsdval2.2 | . . . 4 β’ πΊ = ( +π£ βπ) | |
7 | imsdval2.4 | . . . 4 β’ π = ( Β·π OLD βπ) | |
8 | 1, 6, 7, 2 | nvmval 29895 | . . 3 β’ ((π β NrmCVec β§ π΄ β π β§ π΅ β π) β (π΄( βπ£ βπ)π΅) = (π΄πΊ(-1ππ΅))) |
9 | 8 | fveq2d 6896 | . 2 β’ ((π β NrmCVec β§ π΄ β π β§ π΅ β π) β (πβ(π΄( βπ£ βπ)π΅)) = (πβ(π΄πΊ(-1ππ΅)))) |
10 | 5, 9 | eqtrd 2773 | 1 β’ ((π β NrmCVec β§ π΄ β π β§ π΅ β π) β (π΄π·π΅) = (πβ(π΄πΊ(-1ππ΅)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1088 = wceq 1542 β wcel 2107 βcfv 6544 (class class class)co 7409 1c1 11111 -cneg 11445 NrmCVeccnv 29837 +π£ cpv 29838 BaseSetcba 29839 Β·π OLD cns 29840 βπ£ cnsb 29842 normCVcnmcv 29843 IndMetcims 29844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-ltxr 11253 df-sub 11446 df-neg 11447 df-grpo 29746 df-gid 29747 df-ginv 29748 df-gdiv 29749 df-ablo 29798 df-vc 29812 df-nv 29845 df-va 29848 df-ba 29849 df-sm 29850 df-0v 29851 df-vs 29852 df-nmcv 29853 df-ims 29854 |
This theorem is referenced by: imsmetlem 29943 nmcvcn 29948 smcnlem 29950 |
Copyright terms: Public domain | W3C validator |