![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imsdval2 | Structured version Visualization version GIF version |
Description: Value of the distance function of the induced metric of a normed complex vector space. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 28-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
imsdval2.1 | β’ π = (BaseSetβπ) |
imsdval2.2 | β’ πΊ = ( +π£ βπ) |
imsdval2.4 | β’ π = ( Β·π OLD βπ) |
imsdval2.6 | β’ π = (normCVβπ) |
imsdval2.8 | β’ π· = (IndMetβπ) |
Ref | Expression |
---|---|
imsdval2 | β’ ((π β NrmCVec β§ π΄ β π β§ π΅ β π) β (π΄π·π΅) = (πβ(π΄πΊ(-1ππ΅)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imsdval2.1 | . . 3 β’ π = (BaseSetβπ) | |
2 | eqid 2728 | . . 3 β’ ( βπ£ βπ) = ( βπ£ βπ) | |
3 | imsdval2.6 | . . 3 β’ π = (normCVβπ) | |
4 | imsdval2.8 | . . 3 β’ π· = (IndMetβπ) | |
5 | 1, 2, 3, 4 | imsdval 30524 | . 2 β’ ((π β NrmCVec β§ π΄ β π β§ π΅ β π) β (π΄π·π΅) = (πβ(π΄( βπ£ βπ)π΅))) |
6 | imsdval2.2 | . . . 4 β’ πΊ = ( +π£ βπ) | |
7 | imsdval2.4 | . . . 4 β’ π = ( Β·π OLD βπ) | |
8 | 1, 6, 7, 2 | nvmval 30480 | . . 3 β’ ((π β NrmCVec β§ π΄ β π β§ π΅ β π) β (π΄( βπ£ βπ)π΅) = (π΄πΊ(-1ππ΅))) |
9 | 8 | fveq2d 6906 | . 2 β’ ((π β NrmCVec β§ π΄ β π β§ π΅ β π) β (πβ(π΄( βπ£ βπ)π΅)) = (πβ(π΄πΊ(-1ππ΅)))) |
10 | 5, 9 | eqtrd 2768 | 1 β’ ((π β NrmCVec β§ π΄ β π β§ π΅ β π) β (π΄π·π΅) = (πβ(π΄πΊ(-1ππ΅)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1084 = wceq 1533 β wcel 2098 βcfv 6553 (class class class)co 7426 1c1 11149 -cneg 11485 NrmCVeccnv 30422 +π£ cpv 30423 BaseSetcba 30424 Β·π OLD cns 30425 βπ£ cnsb 30427 normCVcnmcv 30428 IndMetcims 30429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-po 5594 df-so 5595 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-1st 8001 df-2nd 8002 df-er 8733 df-en 8973 df-dom 8974 df-sdom 8975 df-pnf 11290 df-mnf 11291 df-ltxr 11293 df-sub 11486 df-neg 11487 df-grpo 30331 df-gid 30332 df-ginv 30333 df-gdiv 30334 df-ablo 30383 df-vc 30397 df-nv 30430 df-va 30433 df-ba 30434 df-sm 30435 df-0v 30436 df-vs 30437 df-nmcv 30438 df-ims 30439 |
This theorem is referenced by: imsmetlem 30528 nmcvcn 30533 smcnlem 30535 |
Copyright terms: Public domain | W3C validator |