![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpomen | Structured version Visualization version GIF version |
Description: The Cartesian product of omega (the set of ordinal natural numbers) with itself is equinumerous to omega. Exercise 1 of [Enderton] p. 133. (Contributed by NM, 23-Jul-2004.) (Revised by Mario Carneiro, 9-Mar-2013.) |
Ref | Expression |
---|---|
xpomen | ⊢ (ω × ω) ≈ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omelon 8895 | . 2 ⊢ ω ∈ On | |
2 | ssid 3875 | . 2 ⊢ ω ⊆ ω | |
3 | infxpen 9226 | . 2 ⊢ ((ω ∈ On ∧ ω ⊆ ω) → (ω × ω) ≈ ω) | |
4 | 1, 2, 3 | mp2an 679 | 1 ⊢ (ω × ω) ≈ ω |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2048 ⊆ wss 3825 class class class wbr 4923 × cxp 5398 Oncon0 6023 ωcom 7390 ≈ cen 8295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-inf2 8890 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-se 5360 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-isom 6191 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7494 df-2nd 7495 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-1o 7897 df-oadd 7901 df-er 8081 df-en 8299 df-dom 8300 df-sdom 8301 df-fin 8302 df-oi 8761 df-card 9154 |
This theorem is referenced by: xpct 9228 infxpenc2 9234 iunfictbso 9326 unctb 9417 fnct 9749 iunctb 9786 xpnnen 15414 rexpen 15431 2ndcctbss 21757 tx2ndc 21953 met2ndci 22825 dyadmbl 23894 |
Copyright terms: Public domain | W3C validator |