MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpomen Structured version   Visualization version   GIF version

Theorem xpomen 9038
Description: The Cartesian product of omega (the set of ordinal natural numbers) with itself is equinumerous to omega. Exercise 1 of [Enderton] p. 133. (Contributed by NM, 23-Jul-2004.) (Revised by Mario Carneiro, 9-Mar-2013.)
Assertion
Ref Expression
xpomen (ω × ω) ≈ ω

Proof of Theorem xpomen
StepHypRef Expression
1 omelon 8707 . 2 ω ∈ On
2 ssid 3773 . 2 ω ⊆ ω
3 infxpen 9037 . 2 ((ω ∈ On ∧ ω ⊆ ω) → (ω × ω) ≈ ω)
41, 2, 3mp2an 672 1 (ω × ω) ≈ ω
Colors of variables: wff setvar class
Syntax hints:  wcel 2145  wss 3723   class class class wbr 4786   × cxp 5247  Oncon0 5864  ωcom 7212  cen 8106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-isom 6038  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-oi 8571  df-card 8965
This theorem is referenced by:  xpct  9039  infxpenc2  9045  iunfictbso  9137  unctb  9229  fnct  9561  iunctb  9598  xpnnen  15141  rexpen  15159  2ndcctbss  21475  tx1stc  21670  tx2ndc  21671  met2ndci  22543  dyadmbl  23584
  Copyright terms: Public domain W3C validator