| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpomen | Structured version Visualization version GIF version | ||
| Description: The Cartesian product of omega (the set of ordinal natural numbers) with itself is equinumerous to omega. Exercise 1 of [Enderton] p. 133. (Contributed by NM, 23-Jul-2004.) (Revised by Mario Carneiro, 9-Mar-2013.) |
| Ref | Expression |
|---|---|
| xpomen | ⊢ (ω × ω) ≈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omelon 9546 | . 2 ⊢ ω ∈ On | |
| 2 | ssid 3954 | . 2 ⊢ ω ⊆ ω | |
| 3 | infxpen 9915 | . 2 ⊢ ((ω ∈ On ∧ ω ⊆ ω) → (ω × ω) ≈ ω) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (ω × ω) ≈ ω |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 ⊆ wss 3899 class class class wbr 5095 × cxp 5619 Oncon0 6314 ωcom 7805 ≈ cen 8875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9541 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-oi 9406 df-card 9842 |
| This theorem is referenced by: xpct 9917 infxpenc2 9923 iunfictbso 10015 unctb 10105 fnct 10438 iunctb 10475 xpnnen 16130 rexpen 16147 2ndcctbss 23380 tx2ndc 23576 met2ndci 24447 dyadmbl 25538 |
| Copyright terms: Public domain | W3C validator |