MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logfacbnd3 Structured version   Visualization version   GIF version

Theorem logfacbnd3 26104
Description: Show the stronger statement log(𝑥!) = 𝑥log𝑥𝑥 + 𝑂(log𝑥) alluded to in logfacrlim 26105. (Contributed by Mario Carneiro, 20-May-2016.)
Assertion
Ref Expression
logfacbnd3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) ≤ ((log‘𝐴) + 1))

Proof of Theorem logfacbnd3
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 486 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ+)
21rprege0d 12635 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
3 flge0nn0 13395 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0)
42, 3syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0)
54faccld 13850 . . . . . . . . 9 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (!‘(⌊‘𝐴)) ∈ ℕ)
65nnrpd 12626 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (!‘(⌊‘𝐴)) ∈ ℝ+)
7 relogcl 25464 . . . . . . . 8 ((!‘(⌊‘𝐴)) ∈ ℝ+ → (log‘(!‘(⌊‘𝐴))) ∈ ℝ)
86, 7syl 17 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log‘(!‘(⌊‘𝐴))) ∈ ℝ)
9 rpre 12594 . . . . . . . . 9 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
109adantr 484 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ)
11 relogcl 25464 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ)
1211adantr 484 . . . . . . . . 9 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log‘𝐴) ∈ ℝ)
13 peano2rem 11145 . . . . . . . . 9 ((log‘𝐴) ∈ ℝ → ((log‘𝐴) − 1) ∈ ℝ)
1412, 13syl 17 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((log‘𝐴) − 1) ∈ ℝ)
1510, 14remulcld 10863 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (𝐴 · ((log‘𝐴) − 1)) ∈ ℝ)
168, 15resubcld 11260 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) ∈ ℝ)
1716recnd 10861 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) ∈ ℂ)
1817abscld 15000 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) ∈ ℝ)
19 peano2rem 11145 . . . 4 ((abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) ∈ ℝ → ((abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) − 1) ∈ ℝ)
2018, 19syl 17 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) − 1) ∈ ℝ)
21 ax-1cn 10787 . . . . 5 1 ∈ ℂ
22 subcl 11077 . . . . 5 ((((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) ∈ ℂ ∧ 1 ∈ ℂ) → (((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) − 1) ∈ ℂ)
2317, 21, 22sylancl 589 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) − 1) ∈ ℂ)
2423abscld 15000 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘(((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) − 1)) ∈ ℝ)
25 abs1 14861 . . . . 5 (abs‘1) = 1
2625oveq2i 7224 . . . 4 ((abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) − (abs‘1)) = ((abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) − 1)
27 abs2dif 14896 . . . . 5 ((((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) ∈ ℂ ∧ 1 ∈ ℂ) → ((abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) − (abs‘1)) ≤ (abs‘(((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) − 1)))
2817, 21, 27sylancl 589 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) − (abs‘1)) ≤ (abs‘(((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) − 1)))
2926, 28eqbrtrrid 5089 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) − 1) ≤ (abs‘(((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) − 1)))
30 fveq2 6717 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (⌊‘𝑥) = (⌊‘𝐴))
3130oveq2d 7229 . . . . . . . . . . 11 (𝑥 = 𝐴 → (1...(⌊‘𝑥)) = (1...(⌊‘𝐴)))
3231sumeq1d 15265 . . . . . . . . . 10 (𝑥 = 𝐴 → Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) = Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛))
33 id 22 . . . . . . . . . . 11 (𝑥 = 𝐴𝑥 = 𝐴)
34 fveq2 6717 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (log‘𝑥) = (log‘𝐴))
3534oveq1d 7228 . . . . . . . . . . 11 (𝑥 = 𝐴 → ((log‘𝑥) − 1) = ((log‘𝐴) − 1))
3633, 35oveq12d 7231 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑥 · ((log‘𝑥) − 1)) = (𝐴 · ((log‘𝐴) − 1)))
3732, 36oveq12d 7231 . . . . . . . . 9 (𝑥 = 𝐴 → (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))) = (Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛) − (𝐴 · ((log‘𝐴) − 1))))
38 eqid 2737 . . . . . . . . 9 (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))
39 ovex 7246 . . . . . . . . 9 𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))) ∈ V
4037, 38, 39fvmpt3i 6823 . . . . . . . 8 (𝐴 ∈ ℝ+ → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘𝐴) = (Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛) − (𝐴 · ((log‘𝐴) − 1))))
4140adantr 484 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘𝐴) = (Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛) − (𝐴 · ((log‘𝐴) − 1))))
42 logfac 25489 . . . . . . . . 9 ((⌊‘𝐴) ∈ ℕ0 → (log‘(!‘(⌊‘𝐴))) = Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛))
434, 42syl 17 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log‘(!‘(⌊‘𝐴))) = Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛))
4443oveq1d 7228 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) = (Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛) − (𝐴 · ((log‘𝐴) − 1))))
4541, 44eqtr4d 2780 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘𝐴) = ((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))))
46 1rp 12590 . . . . . . 7 1 ∈ ℝ+
47 fveq2 6717 . . . . . . . . . . . . . 14 (𝑥 = 1 → (⌊‘𝑥) = (⌊‘1))
48 1z 12207 . . . . . . . . . . . . . . 15 1 ∈ ℤ
49 flid 13383 . . . . . . . . . . . . . . 15 (1 ∈ ℤ → (⌊‘1) = 1)
5048, 49ax-mp 5 . . . . . . . . . . . . . 14 (⌊‘1) = 1
5147, 50eqtrdi 2794 . . . . . . . . . . . . 13 (𝑥 = 1 → (⌊‘𝑥) = 1)
5251oveq2d 7229 . . . . . . . . . . . 12 (𝑥 = 1 → (1...(⌊‘𝑥)) = (1...1))
5352sumeq1d 15265 . . . . . . . . . . 11 (𝑥 = 1 → Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) = Σ𝑛 ∈ (1...1)(log‘𝑛))
54 0cn 10825 . . . . . . . . . . . 12 0 ∈ ℂ
55 fveq2 6717 . . . . . . . . . . . . . 14 (𝑛 = 1 → (log‘𝑛) = (log‘1))
56 log1 25474 . . . . . . . . . . . . . 14 (log‘1) = 0
5755, 56eqtrdi 2794 . . . . . . . . . . . . 13 (𝑛 = 1 → (log‘𝑛) = 0)
5857fsum1 15311 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ 0 ∈ ℂ) → Σ𝑛 ∈ (1...1)(log‘𝑛) = 0)
5948, 54, 58mp2an 692 . . . . . . . . . . 11 Σ𝑛 ∈ (1...1)(log‘𝑛) = 0
6053, 59eqtrdi 2794 . . . . . . . . . 10 (𝑥 = 1 → Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) = 0)
61 id 22 . . . . . . . . . . . 12 (𝑥 = 1 → 𝑥 = 1)
62 fveq2 6717 . . . . . . . . . . . . . 14 (𝑥 = 1 → (log‘𝑥) = (log‘1))
6362, 56eqtrdi 2794 . . . . . . . . . . . . 13 (𝑥 = 1 → (log‘𝑥) = 0)
6463oveq1d 7228 . . . . . . . . . . . 12 (𝑥 = 1 → ((log‘𝑥) − 1) = (0 − 1))
6561, 64oveq12d 7231 . . . . . . . . . . 11 (𝑥 = 1 → (𝑥 · ((log‘𝑥) − 1)) = (1 · (0 − 1)))
6654, 21subcli 11154 . . . . . . . . . . . 12 (0 − 1) ∈ ℂ
6766mulid2i 10838 . . . . . . . . . . 11 (1 · (0 − 1)) = (0 − 1)
6865, 67eqtrdi 2794 . . . . . . . . . 10 (𝑥 = 1 → (𝑥 · ((log‘𝑥) − 1)) = (0 − 1))
6960, 68oveq12d 7231 . . . . . . . . 9 (𝑥 = 1 → (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))) = (0 − (0 − 1)))
70 nncan 11107 . . . . . . . . . 10 ((0 ∈ ℂ ∧ 1 ∈ ℂ) → (0 − (0 − 1)) = 1)
7154, 21, 70mp2an 692 . . . . . . . . 9 (0 − (0 − 1)) = 1
7269, 71eqtrdi 2794 . . . . . . . 8 (𝑥 = 1 → (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))) = 1)
7372, 38, 39fvmpt3i 6823 . . . . . . 7 (1 ∈ ℝ+ → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘1) = 1)
7446, 73mp1i 13 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘1) = 1)
7545, 74oveq12d 7231 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘𝐴) − ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘1)) = (((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) − 1))
7675fveq2d 6721 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘(((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘𝐴) − ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘1))) = (abs‘(((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) − 1)))
77 ioorp 13013 . . . . . 6 (0(,)+∞) = ℝ+
7877eqcomi 2746 . . . . 5 + = (0(,)+∞)
79 nnuz 12477 . . . . 5 ℕ = (ℤ‘1)
8048a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ∈ ℤ)
81 1re 10833 . . . . . 6 1 ∈ ℝ
8281a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ∈ ℝ)
83 pnfxr 10887 . . . . . 6 +∞ ∈ ℝ*
8483a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → +∞ ∈ ℝ*)
85 1nn0 12106 . . . . . . 7 1 ∈ ℕ0
8681, 85nn0addge1i 12138 . . . . . 6 1 ≤ (1 + 1)
8786a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ≤ (1 + 1))
88 0red 10836 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 0 ∈ ℝ)
89 rpre 12594 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
9089adantl 485 . . . . . 6 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
91 relogcl 25464 . . . . . . . 8 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
9291adantl 485 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
93 peano2rem 11145 . . . . . . 7 ((log‘𝑥) ∈ ℝ → ((log‘𝑥) − 1) ∈ ℝ)
9492, 93syl 17 . . . . . 6 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) − 1) ∈ ℝ)
9590, 94remulcld 10863 . . . . 5 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (𝑥 · ((log‘𝑥) − 1)) ∈ ℝ)
96 nnrp 12597 . . . . . 6 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ+)
9796, 92sylan2 596 . . . . 5 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℕ) → (log‘𝑥) ∈ ℝ)
98 advlog 25542 . . . . . 6 (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))
9998a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
100 fveq2 6717 . . . . 5 (𝑥 = 𝑛 → (log‘𝑥) = (log‘𝑛))
101 simp32 1212 . . . . . 6 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 𝑥𝑛)
102 logleb 25491 . . . . . . 7 ((𝑥 ∈ ℝ+𝑛 ∈ ℝ+) → (𝑥𝑛 ↔ (log‘𝑥) ≤ (log‘𝑛)))
1031023ad2ant2 1136 . . . . . 6 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → (𝑥𝑛 ↔ (log‘𝑥) ≤ (log‘𝑛)))
104101, 103mpbid 235 . . . . 5 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → (log‘𝑥) ≤ (log‘𝑛))
105 simprr 773 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
106 simprl 771 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ+)
107 logleb 25491 . . . . . . . 8 ((1 ∈ ℝ+𝑥 ∈ ℝ+) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
10846, 106, 107sylancr 590 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
109105, 108mpbid 235 . . . . . 6 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘1) ≤ (log‘𝑥))
11056, 109eqbrtrrid 5089 . . . . 5 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ (log‘𝑥))
11146a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ∈ ℝ+)
112 1le1 11460 . . . . . 6 1 ≤ 1
113112a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ≤ 1)
114 simpr 488 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ≤ 𝐴)
11510rexrd 10883 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ*)
116 pnfge 12722 . . . . . 6 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
117115, 116syl 17 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 𝐴 ≤ +∞)
11878, 79, 80, 82, 84, 87, 88, 95, 92, 97, 99, 100, 104, 38, 110, 111, 1, 113, 114, 117, 34dvfsum2 24931 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘(((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘𝐴) − ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘1))) ≤ (log‘𝐴))
11976, 118eqbrtrrd 5077 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘(((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) − 1)) ≤ (log‘𝐴))
12020, 24, 12, 29, 119letrd 10989 . 2 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) − 1) ≤ (log‘𝐴))
12118, 82, 12lesubaddd 11429 . 2 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (((abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) − 1) ≤ (log‘𝐴) ↔ (abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) ≤ ((log‘𝐴) + 1)))
122120, 121mpbid 235 1 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) ≤ ((log‘𝐴) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110   class class class wbr 5053  cmpt 5135  cfv 6380  (class class class)co 7213  cc 10727  cr 10728  0cc0 10729  1c1 10730   + caddc 10732   · cmul 10734  +∞cpnf 10864  *cxr 10866  cle 10868  cmin 11062  cn 11830  0cn0 12090  cz 12176  +crp 12586  (,)cioo 12935  ...cfz 13095  cfl 13365  !cfa 13839  abscabs 14797  Σcsu 15249   D cdv 24760  logclog 25443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-ioc 12940  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-mod 13443  df-seq 13575  df-exp 13636  df-fac 13840  df-bc 13869  df-hash 13897  df-shft 14630  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-limsup 15032  df-clim 15049  df-rlim 15050  df-sum 15250  df-ef 15629  df-sin 15631  df-cos 15632  df-pi 15634  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-pt 16949  df-prds 16952  df-xrs 17007  df-qtop 17012  df-imas 17013  df-xps 17015  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-mulg 18489  df-cntz 18711  df-cmn 19172  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-fbas 20360  df-fg 20361  df-cnfld 20364  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cld 21916  df-ntr 21917  df-cls 21918  df-nei 21995  df-lp 22033  df-perf 22034  df-cn 22124  df-cnp 22125  df-haus 22212  df-cmp 22284  df-tx 22459  df-hmeo 22652  df-fil 22743  df-fm 22835  df-flim 22836  df-flf 22837  df-xms 23218  df-ms 23219  df-tms 23220  df-cncf 23775  df-limc 24763  df-dv 24764  df-log 25445
This theorem is referenced by:  logfacrlim  26105
  Copyright terms: Public domain W3C validator