MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logfacbnd3 Structured version   Visualization version   GIF version

Theorem logfacbnd3 27134
Description: Show the stronger statement log(𝑥!) = 𝑥log𝑥𝑥 + 𝑂(log𝑥) alluded to in logfacrlim 27135. (Contributed by Mario Carneiro, 20-May-2016.)
Assertion
Ref Expression
logfacbnd3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) ≤ ((log‘𝐴) + 1))

Proof of Theorem logfacbnd3
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ+)
21rprege0d 13002 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
3 flge0nn0 13782 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0)
42, 3syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0)
54faccld 14249 . . . . . . . . 9 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (!‘(⌊‘𝐴)) ∈ ℕ)
65nnrpd 12993 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (!‘(⌊‘𝐴)) ∈ ℝ+)
7 relogcl 26484 . . . . . . . 8 ((!‘(⌊‘𝐴)) ∈ ℝ+ → (log‘(!‘(⌊‘𝐴))) ∈ ℝ)
86, 7syl 17 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log‘(!‘(⌊‘𝐴))) ∈ ℝ)
9 rpre 12960 . . . . . . . . 9 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
109adantr 480 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ)
11 relogcl 26484 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ)
1211adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log‘𝐴) ∈ ℝ)
13 peano2rem 11489 . . . . . . . . 9 ((log‘𝐴) ∈ ℝ → ((log‘𝐴) − 1) ∈ ℝ)
1412, 13syl 17 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((log‘𝐴) − 1) ∈ ℝ)
1510, 14remulcld 11204 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (𝐴 · ((log‘𝐴) − 1)) ∈ ℝ)
168, 15resubcld 11606 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) ∈ ℝ)
1716recnd 11202 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) ∈ ℂ)
1817abscld 15405 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) ∈ ℝ)
19 peano2rem 11489 . . . 4 ((abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) ∈ ℝ → ((abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) − 1) ∈ ℝ)
2018, 19syl 17 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) − 1) ∈ ℝ)
21 ax-1cn 11126 . . . . 5 1 ∈ ℂ
22 subcl 11420 . . . . 5 ((((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) ∈ ℂ ∧ 1 ∈ ℂ) → (((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) − 1) ∈ ℂ)
2317, 21, 22sylancl 586 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) − 1) ∈ ℂ)
2423abscld 15405 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘(((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) − 1)) ∈ ℝ)
25 abs1 15263 . . . . 5 (abs‘1) = 1
2625oveq2i 7398 . . . 4 ((abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) − (abs‘1)) = ((abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) − 1)
27 abs2dif 15299 . . . . 5 ((((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) ∈ ℂ ∧ 1 ∈ ℂ) → ((abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) − (abs‘1)) ≤ (abs‘(((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) − 1)))
2817, 21, 27sylancl 586 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) − (abs‘1)) ≤ (abs‘(((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) − 1)))
2926, 28eqbrtrrid 5143 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) − 1) ≤ (abs‘(((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) − 1)))
30 fveq2 6858 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (⌊‘𝑥) = (⌊‘𝐴))
3130oveq2d 7403 . . . . . . . . . . 11 (𝑥 = 𝐴 → (1...(⌊‘𝑥)) = (1...(⌊‘𝐴)))
3231sumeq1d 15666 . . . . . . . . . 10 (𝑥 = 𝐴 → Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) = Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛))
33 id 22 . . . . . . . . . . 11 (𝑥 = 𝐴𝑥 = 𝐴)
34 fveq2 6858 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (log‘𝑥) = (log‘𝐴))
3534oveq1d 7402 . . . . . . . . . . 11 (𝑥 = 𝐴 → ((log‘𝑥) − 1) = ((log‘𝐴) − 1))
3633, 35oveq12d 7405 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑥 · ((log‘𝑥) − 1)) = (𝐴 · ((log‘𝐴) − 1)))
3732, 36oveq12d 7405 . . . . . . . . 9 (𝑥 = 𝐴 → (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))) = (Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛) − (𝐴 · ((log‘𝐴) − 1))))
38 eqid 2729 . . . . . . . . 9 (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))
39 ovex 7420 . . . . . . . . 9 𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))) ∈ V
4037, 38, 39fvmpt3i 6973 . . . . . . . 8 (𝐴 ∈ ℝ+ → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘𝐴) = (Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛) − (𝐴 · ((log‘𝐴) − 1))))
4140adantr 480 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘𝐴) = (Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛) − (𝐴 · ((log‘𝐴) − 1))))
42 logfac 26510 . . . . . . . . 9 ((⌊‘𝐴) ∈ ℕ0 → (log‘(!‘(⌊‘𝐴))) = Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛))
434, 42syl 17 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log‘(!‘(⌊‘𝐴))) = Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛))
4443oveq1d 7402 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) = (Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛) − (𝐴 · ((log‘𝐴) − 1))))
4541, 44eqtr4d 2767 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘𝐴) = ((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))))
46 1rp 12955 . . . . . . 7 1 ∈ ℝ+
47 fveq2 6858 . . . . . . . . . . . . . 14 (𝑥 = 1 → (⌊‘𝑥) = (⌊‘1))
48 1z 12563 . . . . . . . . . . . . . . 15 1 ∈ ℤ
49 flid 13770 . . . . . . . . . . . . . . 15 (1 ∈ ℤ → (⌊‘1) = 1)
5048, 49ax-mp 5 . . . . . . . . . . . . . 14 (⌊‘1) = 1
5147, 50eqtrdi 2780 . . . . . . . . . . . . 13 (𝑥 = 1 → (⌊‘𝑥) = 1)
5251oveq2d 7403 . . . . . . . . . . . 12 (𝑥 = 1 → (1...(⌊‘𝑥)) = (1...1))
5352sumeq1d 15666 . . . . . . . . . . 11 (𝑥 = 1 → Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) = Σ𝑛 ∈ (1...1)(log‘𝑛))
54 0cn 11166 . . . . . . . . . . . 12 0 ∈ ℂ
55 fveq2 6858 . . . . . . . . . . . . . 14 (𝑛 = 1 → (log‘𝑛) = (log‘1))
56 log1 26494 . . . . . . . . . . . . . 14 (log‘1) = 0
5755, 56eqtrdi 2780 . . . . . . . . . . . . 13 (𝑛 = 1 → (log‘𝑛) = 0)
5857fsum1 15713 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ 0 ∈ ℂ) → Σ𝑛 ∈ (1...1)(log‘𝑛) = 0)
5948, 54, 58mp2an 692 . . . . . . . . . . 11 Σ𝑛 ∈ (1...1)(log‘𝑛) = 0
6053, 59eqtrdi 2780 . . . . . . . . . 10 (𝑥 = 1 → Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) = 0)
61 id 22 . . . . . . . . . . . 12 (𝑥 = 1 → 𝑥 = 1)
62 fveq2 6858 . . . . . . . . . . . . . 14 (𝑥 = 1 → (log‘𝑥) = (log‘1))
6362, 56eqtrdi 2780 . . . . . . . . . . . . 13 (𝑥 = 1 → (log‘𝑥) = 0)
6463oveq1d 7402 . . . . . . . . . . . 12 (𝑥 = 1 → ((log‘𝑥) − 1) = (0 − 1))
6561, 64oveq12d 7405 . . . . . . . . . . 11 (𝑥 = 1 → (𝑥 · ((log‘𝑥) − 1)) = (1 · (0 − 1)))
6654, 21subcli 11498 . . . . . . . . . . . 12 (0 − 1) ∈ ℂ
6766mullidi 11179 . . . . . . . . . . 11 (1 · (0 − 1)) = (0 − 1)
6865, 67eqtrdi 2780 . . . . . . . . . 10 (𝑥 = 1 → (𝑥 · ((log‘𝑥) − 1)) = (0 − 1))
6960, 68oveq12d 7405 . . . . . . . . 9 (𝑥 = 1 → (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))) = (0 − (0 − 1)))
70 nncan 11451 . . . . . . . . . 10 ((0 ∈ ℂ ∧ 1 ∈ ℂ) → (0 − (0 − 1)) = 1)
7154, 21, 70mp2an 692 . . . . . . . . 9 (0 − (0 − 1)) = 1
7269, 71eqtrdi 2780 . . . . . . . 8 (𝑥 = 1 → (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))) = 1)
7372, 38, 39fvmpt3i 6973 . . . . . . 7 (1 ∈ ℝ+ → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘1) = 1)
7446, 73mp1i 13 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘1) = 1)
7545, 74oveq12d 7405 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘𝐴) − ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘1)) = (((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) − 1))
7675fveq2d 6862 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘(((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘𝐴) − ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘1))) = (abs‘(((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) − 1)))
77 ioorp 13386 . . . . . 6 (0(,)+∞) = ℝ+
7877eqcomi 2738 . . . . 5 + = (0(,)+∞)
79 nnuz 12836 . . . . 5 ℕ = (ℤ‘1)
8048a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ∈ ℤ)
81 1re 11174 . . . . . 6 1 ∈ ℝ
8281a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ∈ ℝ)
83 pnfxr 11228 . . . . . 6 +∞ ∈ ℝ*
8483a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → +∞ ∈ ℝ*)
85 1nn0 12458 . . . . . . 7 1 ∈ ℕ0
8681, 85nn0addge1i 12490 . . . . . 6 1 ≤ (1 + 1)
8786a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ≤ (1 + 1))
88 0red 11177 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 0 ∈ ℝ)
89 rpre 12960 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
9089adantl 481 . . . . . 6 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
91 relogcl 26484 . . . . . . . 8 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
9291adantl 481 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
93 peano2rem 11489 . . . . . . 7 ((log‘𝑥) ∈ ℝ → ((log‘𝑥) − 1) ∈ ℝ)
9492, 93syl 17 . . . . . 6 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) − 1) ∈ ℝ)
9590, 94remulcld 11204 . . . . 5 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (𝑥 · ((log‘𝑥) − 1)) ∈ ℝ)
96 nnrp 12963 . . . . . 6 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ+)
9796, 92sylan2 593 . . . . 5 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℕ) → (log‘𝑥) ∈ ℝ)
98 advlog 26563 . . . . . 6 (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))
9998a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
100 fveq2 6858 . . . . 5 (𝑥 = 𝑛 → (log‘𝑥) = (log‘𝑛))
101 simp32 1211 . . . . . 6 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 𝑥𝑛)
102 logleb 26512 . . . . . . 7 ((𝑥 ∈ ℝ+𝑛 ∈ ℝ+) → (𝑥𝑛 ↔ (log‘𝑥) ≤ (log‘𝑛)))
1031023ad2ant2 1134 . . . . . 6 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → (𝑥𝑛 ↔ (log‘𝑥) ≤ (log‘𝑛)))
104101, 103mpbid 232 . . . . 5 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → (log‘𝑥) ≤ (log‘𝑛))
105 simprr 772 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
106 simprl 770 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ+)
107 logleb 26512 . . . . . . . 8 ((1 ∈ ℝ+𝑥 ∈ ℝ+) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
10846, 106, 107sylancr 587 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
109105, 108mpbid 232 . . . . . 6 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘1) ≤ (log‘𝑥))
11056, 109eqbrtrrid 5143 . . . . 5 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ (log‘𝑥))
11146a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ∈ ℝ+)
112 1le1 11806 . . . . . 6 1 ≤ 1
113112a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ≤ 1)
114 simpr 484 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ≤ 𝐴)
11510rexrd 11224 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ*)
116 pnfge 13090 . . . . . 6 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
117115, 116syl 17 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 𝐴 ≤ +∞)
11878, 79, 80, 82, 84, 87, 88, 95, 92, 97, 99, 100, 104, 38, 110, 111, 1, 113, 114, 117, 34dvfsum2 25941 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘(((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘𝐴) − ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘1))) ≤ (log‘𝐴))
11976, 118eqbrtrrd 5131 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘(((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) − 1)) ≤ (log‘𝐴))
12020, 24, 12, 29, 119letrd 11331 . 2 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) − 1) ≤ (log‘𝐴))
12118, 82, 12lesubaddd 11775 . 2 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (((abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) − 1) ≤ (log‘𝐴) ↔ (abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) ≤ ((log‘𝐴) + 1)))
122120, 121mpbid 232 1 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) ≤ ((log‘𝐴) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  +∞cpnf 11205  *cxr 11207  cle 11209  cmin 11405  cn 12186  0cn0 12442  cz 12529  +crp 12951  (,)cioo 13306  ...cfz 13468  cfl 13752  !cfa 14238  abscabs 15200  Σcsu 15652   D cdv 25764  logclog 26463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465
This theorem is referenced by:  logfacrlim  27135
  Copyright terms: Public domain W3C validator