MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logfacbnd3 Structured version   Visualization version   GIF version

Theorem logfacbnd3 27154
Description: Show the stronger statement log(𝑥!) = 𝑥log𝑥𝑥 + 𝑂(log𝑥) alluded to in logfacrlim 27155. (Contributed by Mario Carneiro, 20-May-2016.)
Assertion
Ref Expression
logfacbnd3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) ≤ ((log‘𝐴) + 1))

Proof of Theorem logfacbnd3
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ+)
21rprege0d 12933 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
3 flge0nn0 13716 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0)
42, 3syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0)
54faccld 14183 . . . . . . . . 9 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (!‘(⌊‘𝐴)) ∈ ℕ)
65nnrpd 12924 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (!‘(⌊‘𝐴)) ∈ ℝ+)
7 relogcl 26504 . . . . . . . 8 ((!‘(⌊‘𝐴)) ∈ ℝ+ → (log‘(!‘(⌊‘𝐴))) ∈ ℝ)
86, 7syl 17 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log‘(!‘(⌊‘𝐴))) ∈ ℝ)
9 rpre 12891 . . . . . . . . 9 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
109adantr 480 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ)
11 relogcl 26504 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ)
1211adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log‘𝐴) ∈ ℝ)
13 peano2rem 11420 . . . . . . . . 9 ((log‘𝐴) ∈ ℝ → ((log‘𝐴) − 1) ∈ ℝ)
1412, 13syl 17 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((log‘𝐴) − 1) ∈ ℝ)
1510, 14remulcld 11134 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (𝐴 · ((log‘𝐴) − 1)) ∈ ℝ)
168, 15resubcld 11537 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) ∈ ℝ)
1716recnd 11132 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) ∈ ℂ)
1817abscld 15338 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) ∈ ℝ)
19 peano2rem 11420 . . . 4 ((abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) ∈ ℝ → ((abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) − 1) ∈ ℝ)
2018, 19syl 17 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) − 1) ∈ ℝ)
21 ax-1cn 11056 . . . . 5 1 ∈ ℂ
22 subcl 11351 . . . . 5 ((((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) ∈ ℂ ∧ 1 ∈ ℂ) → (((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) − 1) ∈ ℂ)
2317, 21, 22sylancl 586 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) − 1) ∈ ℂ)
2423abscld 15338 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘(((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) − 1)) ∈ ℝ)
25 abs1 15196 . . . . 5 (abs‘1) = 1
2625oveq2i 7352 . . . 4 ((abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) − (abs‘1)) = ((abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) − 1)
27 abs2dif 15232 . . . . 5 ((((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) ∈ ℂ ∧ 1 ∈ ℂ) → ((abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) − (abs‘1)) ≤ (abs‘(((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) − 1)))
2817, 21, 27sylancl 586 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) − (abs‘1)) ≤ (abs‘(((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) − 1)))
2926, 28eqbrtrrid 5125 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) − 1) ≤ (abs‘(((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) − 1)))
30 fveq2 6817 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (⌊‘𝑥) = (⌊‘𝐴))
3130oveq2d 7357 . . . . . . . . . . 11 (𝑥 = 𝐴 → (1...(⌊‘𝑥)) = (1...(⌊‘𝐴)))
3231sumeq1d 15599 . . . . . . . . . 10 (𝑥 = 𝐴 → Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) = Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛))
33 id 22 . . . . . . . . . . 11 (𝑥 = 𝐴𝑥 = 𝐴)
34 fveq2 6817 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (log‘𝑥) = (log‘𝐴))
3534oveq1d 7356 . . . . . . . . . . 11 (𝑥 = 𝐴 → ((log‘𝑥) − 1) = ((log‘𝐴) − 1))
3633, 35oveq12d 7359 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑥 · ((log‘𝑥) − 1)) = (𝐴 · ((log‘𝐴) − 1)))
3732, 36oveq12d 7359 . . . . . . . . 9 (𝑥 = 𝐴 → (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))) = (Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛) − (𝐴 · ((log‘𝐴) − 1))))
38 eqid 2730 . . . . . . . . 9 (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))
39 ovex 7374 . . . . . . . . 9 𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))) ∈ V
4037, 38, 39fvmpt3i 6929 . . . . . . . 8 (𝐴 ∈ ℝ+ → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘𝐴) = (Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛) − (𝐴 · ((log‘𝐴) − 1))))
4140adantr 480 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘𝐴) = (Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛) − (𝐴 · ((log‘𝐴) − 1))))
42 logfac 26530 . . . . . . . . 9 ((⌊‘𝐴) ∈ ℕ0 → (log‘(!‘(⌊‘𝐴))) = Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛))
434, 42syl 17 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log‘(!‘(⌊‘𝐴))) = Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛))
4443oveq1d 7356 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) = (Σ𝑛 ∈ (1...(⌊‘𝐴))(log‘𝑛) − (𝐴 · ((log‘𝐴) − 1))))
4541, 44eqtr4d 2768 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘𝐴) = ((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))))
46 1rp 12886 . . . . . . 7 1 ∈ ℝ+
47 fveq2 6817 . . . . . . . . . . . . . 14 (𝑥 = 1 → (⌊‘𝑥) = (⌊‘1))
48 1z 12494 . . . . . . . . . . . . . . 15 1 ∈ ℤ
49 flid 13704 . . . . . . . . . . . . . . 15 (1 ∈ ℤ → (⌊‘1) = 1)
5048, 49ax-mp 5 . . . . . . . . . . . . . 14 (⌊‘1) = 1
5147, 50eqtrdi 2781 . . . . . . . . . . . . 13 (𝑥 = 1 → (⌊‘𝑥) = 1)
5251oveq2d 7357 . . . . . . . . . . . 12 (𝑥 = 1 → (1...(⌊‘𝑥)) = (1...1))
5352sumeq1d 15599 . . . . . . . . . . 11 (𝑥 = 1 → Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) = Σ𝑛 ∈ (1...1)(log‘𝑛))
54 0cn 11096 . . . . . . . . . . . 12 0 ∈ ℂ
55 fveq2 6817 . . . . . . . . . . . . . 14 (𝑛 = 1 → (log‘𝑛) = (log‘1))
56 log1 26514 . . . . . . . . . . . . . 14 (log‘1) = 0
5755, 56eqtrdi 2781 . . . . . . . . . . . . 13 (𝑛 = 1 → (log‘𝑛) = 0)
5857fsum1 15646 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ 0 ∈ ℂ) → Σ𝑛 ∈ (1...1)(log‘𝑛) = 0)
5948, 54, 58mp2an 692 . . . . . . . . . . 11 Σ𝑛 ∈ (1...1)(log‘𝑛) = 0
6053, 59eqtrdi 2781 . . . . . . . . . 10 (𝑥 = 1 → Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) = 0)
61 id 22 . . . . . . . . . . . 12 (𝑥 = 1 → 𝑥 = 1)
62 fveq2 6817 . . . . . . . . . . . . . 14 (𝑥 = 1 → (log‘𝑥) = (log‘1))
6362, 56eqtrdi 2781 . . . . . . . . . . . . 13 (𝑥 = 1 → (log‘𝑥) = 0)
6463oveq1d 7356 . . . . . . . . . . . 12 (𝑥 = 1 → ((log‘𝑥) − 1) = (0 − 1))
6561, 64oveq12d 7359 . . . . . . . . . . 11 (𝑥 = 1 → (𝑥 · ((log‘𝑥) − 1)) = (1 · (0 − 1)))
6654, 21subcli 11429 . . . . . . . . . . . 12 (0 − 1) ∈ ℂ
6766mullidi 11109 . . . . . . . . . . 11 (1 · (0 − 1)) = (0 − 1)
6865, 67eqtrdi 2781 . . . . . . . . . 10 (𝑥 = 1 → (𝑥 · ((log‘𝑥) − 1)) = (0 − 1))
6960, 68oveq12d 7359 . . . . . . . . 9 (𝑥 = 1 → (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))) = (0 − (0 − 1)))
70 nncan 11382 . . . . . . . . . 10 ((0 ∈ ℂ ∧ 1 ∈ ℂ) → (0 − (0 − 1)) = 1)
7154, 21, 70mp2an 692 . . . . . . . . 9 (0 − (0 − 1)) = 1
7269, 71eqtrdi 2781 . . . . . . . 8 (𝑥 = 1 → (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))) = 1)
7372, 38, 39fvmpt3i 6929 . . . . . . 7 (1 ∈ ℝ+ → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘1) = 1)
7446, 73mp1i 13 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘1) = 1)
7545, 74oveq12d 7359 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘𝐴) − ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘1)) = (((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) − 1))
7675fveq2d 6821 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘(((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘𝐴) − ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘1))) = (abs‘(((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) − 1)))
77 ioorp 13317 . . . . . 6 (0(,)+∞) = ℝ+
7877eqcomi 2739 . . . . 5 + = (0(,)+∞)
79 nnuz 12767 . . . . 5 ℕ = (ℤ‘1)
8048a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ∈ ℤ)
81 1re 11104 . . . . . 6 1 ∈ ℝ
8281a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ∈ ℝ)
83 pnfxr 11158 . . . . . 6 +∞ ∈ ℝ*
8483a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → +∞ ∈ ℝ*)
85 1nn0 12389 . . . . . . 7 1 ∈ ℕ0
8681, 85nn0addge1i 12421 . . . . . 6 1 ≤ (1 + 1)
8786a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ≤ (1 + 1))
88 0red 11107 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 0 ∈ ℝ)
89 rpre 12891 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
9089adantl 481 . . . . . 6 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
91 relogcl 26504 . . . . . . . 8 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
9291adantl 481 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
93 peano2rem 11420 . . . . . . 7 ((log‘𝑥) ∈ ℝ → ((log‘𝑥) − 1) ∈ ℝ)
9492, 93syl 17 . . . . . 6 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) − 1) ∈ ℝ)
9590, 94remulcld 11134 . . . . 5 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (𝑥 · ((log‘𝑥) − 1)) ∈ ℝ)
96 nnrp 12894 . . . . . 6 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ+)
9796, 92sylan2 593 . . . . 5 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℕ) → (log‘𝑥) ∈ ℝ)
98 advlog 26583 . . . . . 6 (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))
9998a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
100 fveq2 6817 . . . . 5 (𝑥 = 𝑛 → (log‘𝑥) = (log‘𝑛))
101 simp32 1211 . . . . . 6 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 𝑥𝑛)
102 logleb 26532 . . . . . . 7 ((𝑥 ∈ ℝ+𝑛 ∈ ℝ+) → (𝑥𝑛 ↔ (log‘𝑥) ≤ (log‘𝑛)))
1031023ad2ant2 1134 . . . . . 6 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → (𝑥𝑛 ↔ (log‘𝑥) ≤ (log‘𝑛)))
104101, 103mpbid 232 . . . . 5 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → (log‘𝑥) ≤ (log‘𝑛))
105 simprr 772 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥)
106 simprl 770 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ+)
107 logleb 26532 . . . . . . . 8 ((1 ∈ ℝ+𝑥 ∈ ℝ+) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
10846, 106, 107sylancr 587 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
109105, 108mpbid 232 . . . . . 6 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘1) ≤ (log‘𝑥))
11056, 109eqbrtrrid 5125 . . . . 5 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ (log‘𝑥))
11146a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ∈ ℝ+)
112 1le1 11737 . . . . . 6 1 ≤ 1
113112a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ≤ 1)
114 simpr 484 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ≤ 𝐴)
11510rexrd 11154 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ*)
116 pnfge 13021 . . . . . 6 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
117115, 116syl 17 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 𝐴 ≤ +∞)
11878, 79, 80, 82, 84, 87, 88, 95, 92, 97, 99, 100, 104, 38, 110, 111, 1, 113, 114, 117, 34dvfsum2 25961 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘(((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘𝐴) − ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(log‘𝑛) − (𝑥 · ((log‘𝑥) − 1))))‘1))) ≤ (log‘𝐴))
11976, 118eqbrtrrd 5113 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘(((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1))) − 1)) ≤ (log‘𝐴))
12020, 24, 12, 29, 119letrd 11262 . 2 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) − 1) ≤ (log‘𝐴))
12118, 82, 12lesubaddd 11706 . 2 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (((abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) − 1) ≤ (log‘𝐴) ↔ (abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) ≤ ((log‘𝐴) + 1)))
122120, 121mpbid 232 1 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘((log‘(!‘(⌊‘𝐴))) − (𝐴 · ((log‘𝐴) − 1)))) ≤ ((log‘𝐴) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110   class class class wbr 5089  cmpt 5170  cfv 6477  (class class class)co 7341  cc 10996  cr 10997  0cc0 10998  1c1 10999   + caddc 11001   · cmul 11003  +∞cpnf 11135  *cxr 11137  cle 11139  cmin 11336  cn 12117  0cn0 12373  cz 12460  +crp 12882  (,)cioo 13237  ...cfz 13399  cfl 13686  !cfa 14172  abscabs 15133  Σcsu 15585   D cdv 25784  logclog 26483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076  ax-addf 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-q 12839  df-rp 12883  df-xneg 13003  df-xadd 13004  df-xmul 13005  df-ioo 13241  df-ioc 13242  df-ico 13243  df-icc 13244  df-fz 13400  df-fzo 13547  df-fl 13688  df-mod 13766  df-seq 13901  df-exp 13961  df-fac 14173  df-bc 14202  df-hash 14230  df-shft 14966  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-limsup 15370  df-clim 15387  df-rlim 15388  df-sum 15586  df-ef 15966  df-sin 15968  df-cos 15969  df-pi 15971  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-starv 17168  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-unif 17176  df-hom 17177  df-cco 17178  df-rest 17318  df-topn 17319  df-0g 17337  df-gsum 17338  df-topgen 17339  df-pt 17340  df-prds 17343  df-xrs 17398  df-qtop 17403  df-imas 17404  df-xps 17406  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-submnd 18684  df-mulg 18973  df-cntz 19222  df-cmn 19687  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-fbas 21281  df-fg 21282  df-cnfld 21285  df-top 22802  df-topon 22819  df-topsp 22841  df-bases 22854  df-cld 22927  df-ntr 22928  df-cls 22929  df-nei 23006  df-lp 23044  df-perf 23045  df-cn 23135  df-cnp 23136  df-haus 23223  df-cmp 23295  df-tx 23470  df-hmeo 23663  df-fil 23754  df-fm 23846  df-flim 23847  df-flf 23848  df-xms 24228  df-ms 24229  df-tms 24230  df-cncf 24791  df-limc 25787  df-dv 25788  df-log 26485
This theorem is referenced by:  logfacrlim  27155
  Copyright terms: Public domain W3C validator