MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divsqrtsumlem Structured version   Visualization version   GIF version

Theorem divsqrtsumlem 25120
Description: Lemma for divsqrsum 25122 and divsqrtsum2 25123. (Contributed by Mario Carneiro, 18-May-2016.)
Hypothesis
Ref Expression
divsqrtsum.2 𝐹 = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑛)) − (2 · (√‘𝑥))))
Assertion
Ref Expression
divsqrtsumlem (𝐹:ℝ+⟶ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ((𝐹𝑟 𝐿𝐴 ∈ ℝ+) → (abs‘((𝐹𝐴) − 𝐿)) ≤ (1 / (√‘𝐴))))
Distinct variable group:   𝑥,𝑛,𝐴
Allowed substitution hints:   𝐹(𝑥,𝑛)   𝐿(𝑥,𝑛)

Proof of Theorem divsqrtsumlem
StepHypRef Expression
1 ioorp 12540 . . . . . 6 (0(,)+∞) = ℝ+
21eqcomi 2835 . . . . 5 + = (0(,)+∞)
3 nnuz 12006 . . . . 5 ℕ = (ℤ‘1)
4 1zzd 11737 . . . . 5 (⊤ → 1 ∈ ℤ)
5 0red 10361 . . . . 5 (⊤ → 0 ∈ ℝ)
6 1re 10357 . . . . . . 7 1 ∈ ℝ
7 0nn0 11636 . . . . . . 7 0 ∈ ℕ0
86, 7nn0addge2i 11670 . . . . . 6 1 ≤ (0 + 1)
98a1i 11 . . . . 5 (⊤ → 1 ≤ (0 + 1))
10 2re 11426 . . . . . 6 2 ∈ ℝ
11 rpsqrtcl 14383 . . . . . . . 8 (𝑥 ∈ ℝ+ → (√‘𝑥) ∈ ℝ+)
1211adantl 475 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ+)
1312rpred 12157 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ)
14 remulcl 10338 . . . . . 6 ((2 ∈ ℝ ∧ (√‘𝑥) ∈ ℝ) → (2 · (√‘𝑥)) ∈ ℝ)
1510, 13, 14sylancr 583 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (2 · (√‘𝑥)) ∈ ℝ)
1612rprecred 12168 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / (√‘𝑥)) ∈ ℝ)
17 nnrp 12126 . . . . . 6 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ+)
1817, 16sylan2 588 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℕ) → (1 / (√‘𝑥)) ∈ ℝ)
19 reelprrecn 10345 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
2019a1i 11 . . . . . . 7 (⊤ → ℝ ∈ {ℝ, ℂ})
2112rpcnd 12159 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℂ)
22 2rp 12118 . . . . . . . . 9 2 ∈ ℝ+
23 rpmulcl 12138 . . . . . . . . 9 ((2 ∈ ℝ+ ∧ (√‘𝑥) ∈ ℝ+) → (2 · (√‘𝑥)) ∈ ℝ+)
2422, 12, 23sylancr 583 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → (2 · (√‘𝑥)) ∈ ℝ+)
2524rpreccld 12167 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / (2 · (√‘𝑥))) ∈ ℝ+)
26 dvsqrt 24886 . . . . . . . 8 (ℝ D (𝑥 ∈ ℝ+ ↦ (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / (2 · (√‘𝑥))))
2726a1i 11 . . . . . . 7 (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / (2 · (√‘𝑥)))))
28 2cnd 11430 . . . . . . 7 (⊤ → 2 ∈ ℂ)
2920, 21, 25, 27, 28dvmptcmul 24127 . . . . . 6 (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (2 · (√‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (2 · (1 / (2 · (√‘𝑥))))))
30 2cnd 11430 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → 2 ∈ ℂ)
31 1cnd 10352 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℂ)
3224rpcnne0d 12166 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((2 · (√‘𝑥)) ∈ ℂ ∧ (2 · (√‘𝑥)) ≠ 0))
33 divass 11029 . . . . . . . . 9 ((2 ∈ ℂ ∧ 1 ∈ ℂ ∧ ((2 · (√‘𝑥)) ∈ ℂ ∧ (2 · (√‘𝑥)) ≠ 0)) → ((2 · 1) / (2 · (√‘𝑥))) = (2 · (1 / (2 · (√‘𝑥)))))
3430, 31, 32, 33syl3anc 1496 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((2 · 1) / (2 · (√‘𝑥))) = (2 · (1 / (2 · (√‘𝑥)))))
3512rpcnne0d 12166 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0))
36 rpcnne0 12133 . . . . . . . . . 10 (2 ∈ ℝ+ → (2 ∈ ℂ ∧ 2 ≠ 0))
3722, 36mp1i 13 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → (2 ∈ ℂ ∧ 2 ≠ 0))
38 divcan5 11054 . . . . . . . . 9 ((1 ∈ ℂ ∧ ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((2 · 1) / (2 · (√‘𝑥))) = (1 / (√‘𝑥)))
3931, 35, 37, 38syl3anc 1496 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((2 · 1) / (2 · (√‘𝑥))) = (1 / (√‘𝑥)))
4034, 39eqtr3d 2864 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (2 · (1 / (2 · (√‘𝑥)))) = (1 / (√‘𝑥)))
4140mpteq2dva 4968 . . . . . 6 (⊤ → (𝑥 ∈ ℝ+ ↦ (2 · (1 / (2 · (√‘𝑥))))) = (𝑥 ∈ ℝ+ ↦ (1 / (√‘𝑥))))
4229, 41eqtrd 2862 . . . . 5 (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (2 · (√‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (1 / (√‘𝑥))))
43 fveq2 6434 . . . . . 6 (𝑥 = 𝑛 → (√‘𝑥) = (√‘𝑛))
4443oveq2d 6922 . . . . 5 (𝑥 = 𝑛 → (1 / (√‘𝑥)) = (1 / (√‘𝑛)))
45 simp3r 1265 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → 𝑥𝑛)
46 simp2l 1262 . . . . . . . . 9 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → 𝑥 ∈ ℝ+)
4746rprege0d 12164 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
48 simp2r 1263 . . . . . . . . 9 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → 𝑛 ∈ ℝ+)
4948rprege0d 12164 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → (𝑛 ∈ ℝ ∧ 0 ≤ 𝑛))
50 sqrtle 14379 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑛 ∈ ℝ ∧ 0 ≤ 𝑛)) → (𝑥𝑛 ↔ (√‘𝑥) ≤ (√‘𝑛)))
5147, 49, 50syl2anc 581 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → (𝑥𝑛 ↔ (√‘𝑥) ≤ (√‘𝑛)))
5245, 51mpbid 224 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → (√‘𝑥) ≤ (√‘𝑛))
5346rpsqrtcld 14528 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → (√‘𝑥) ∈ ℝ+)
5448rpsqrtcld 14528 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → (√‘𝑛) ∈ ℝ+)
5553, 54lerecd 12176 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → ((√‘𝑥) ≤ (√‘𝑛) ↔ (1 / (√‘𝑛)) ≤ (1 / (√‘𝑥))))
5652, 55mpbid 224 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → (1 / (√‘𝑛)) ≤ (1 / (√‘𝑥)))
57 divsqrtsum.2 . . . . 5 𝐹 = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑛)) − (2 · (√‘𝑥))))
58 sqrtlim 25113 . . . . . 6 (𝑥 ∈ ℝ+ ↦ (1 / (√‘𝑥))) ⇝𝑟 0
5958a1i 11 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ (1 / (√‘𝑥))) ⇝𝑟 0)
60 fveq2 6434 . . . . . 6 (𝑥 = 𝐴 → (√‘𝑥) = (√‘𝐴))
6160oveq2d 6922 . . . . 5 (𝑥 = 𝐴 → (1 / (√‘𝑥)) = (1 / (√‘𝐴)))
622, 3, 4, 5, 9, 5, 15, 16, 18, 42, 44, 56, 57, 59, 61dvfsumrlim3 24196 . . . 4 (⊤ → (𝐹:ℝ+⟶ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ((𝐹𝑟 𝐿𝐴 ∈ ℝ+ ∧ 0 ≤ 𝐴) → (abs‘((𝐹𝐴) − 𝐿)) ≤ (1 / (√‘𝐴)))))
6362simp1d 1178 . . 3 (⊤ → 𝐹:ℝ+⟶ℝ)
6463mptru 1666 . 2 𝐹:ℝ+⟶ℝ
6562simp2d 1179 . . 3 (⊤ → 𝐹 ∈ dom ⇝𝑟 )
6665mptru 1666 . 2 𝐹 ∈ dom ⇝𝑟
67 rpge0 12128 . . . 4 (𝐴 ∈ ℝ+ → 0 ≤ 𝐴)
6867adantl 475 . . 3 ((𝐹𝑟 𝐿𝐴 ∈ ℝ+) → 0 ≤ 𝐴)
6962simp3d 1180 . . . 4 (⊤ → ((𝐹𝑟 𝐿𝐴 ∈ ℝ+ ∧ 0 ≤ 𝐴) → (abs‘((𝐹𝐴) − 𝐿)) ≤ (1 / (√‘𝐴))))
7069mptru 1666 . . 3 ((𝐹𝑟 𝐿𝐴 ∈ ℝ+ ∧ 0 ≤ 𝐴) → (abs‘((𝐹𝐴) − 𝐿)) ≤ (1 / (√‘𝐴)))
7168, 70mpd3an3 1592 . 2 ((𝐹𝑟 𝐿𝐴 ∈ ℝ+) → (abs‘((𝐹𝐴) − 𝐿)) ≤ (1 / (√‘𝐴)))
7264, 66, 713pm3.2i 1444 1 (𝐹:ℝ+⟶ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ((𝐹𝑟 𝐿𝐴 ∈ ℝ+) → (abs‘((𝐹𝐴) − 𝐿)) ≤ (1 / (√‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1113   = wceq 1658  wtru 1659  wcel 2166  wne 3000  {cpr 4400   class class class wbr 4874  cmpt 4953  dom cdm 5343  wf 6120  cfv 6124  (class class class)co 6906  cc 10251  cr 10252  0cc0 10253  1c1 10254   + caddc 10256   · cmul 10258  +∞cpnf 10389  cle 10393  cmin 10586   / cdiv 11010  cn 11351  2c2 11407  +crp 12113  (,)cioo 12464  ...cfz 12620  cfl 12887  csqrt 14351  abscabs 14352  𝑟 crli 14594  Σcsu 14794   D cdv 24027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-inf2 8816  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330  ax-pre-sup 10331  ax-addf 10332  ax-mulf 10333
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-int 4699  df-iun 4743  df-iin 4744  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-se 5303  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-isom 6133  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-of 7158  df-om 7328  df-1st 7429  df-2nd 7430  df-supp 7561  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-1o 7827  df-2o 7828  df-oadd 7831  df-er 8010  df-map 8125  df-pm 8126  df-ixp 8177  df-en 8224  df-dom 8225  df-sdom 8226  df-fin 8227  df-fsupp 8546  df-fi 8587  df-sup 8618  df-inf 8619  df-oi 8685  df-card 9079  df-cda 9306  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-div 11011  df-nn 11352  df-2 11415  df-3 11416  df-4 11417  df-5 11418  df-6 11419  df-7 11420  df-8 11421  df-9 11422  df-n0 11620  df-z 11706  df-dec 11823  df-uz 11970  df-q 12073  df-rp 12114  df-xneg 12233  df-xadd 12234  df-xmul 12235  df-ioo 12468  df-ioc 12469  df-ico 12470  df-icc 12471  df-fz 12621  df-fzo 12762  df-fl 12889  df-mod 12965  df-seq 13097  df-exp 13156  df-fac 13355  df-bc 13384  df-hash 13412  df-shft 14185  df-cj 14217  df-re 14218  df-im 14219  df-sqrt 14353  df-abs 14354  df-limsup 14580  df-clim 14597  df-rlim 14598  df-sum 14795  df-ef 15171  df-sin 15173  df-cos 15174  df-pi 15176  df-struct 16225  df-ndx 16226  df-slot 16227  df-base 16229  df-sets 16230  df-ress 16231  df-plusg 16319  df-mulr 16320  df-starv 16321  df-sca 16322  df-vsca 16323  df-ip 16324  df-tset 16325  df-ple 16326  df-ds 16328  df-unif 16329  df-hom 16330  df-cco 16331  df-rest 16437  df-topn 16438  df-0g 16456  df-gsum 16457  df-topgen 16458  df-pt 16459  df-prds 16462  df-xrs 16516  df-qtop 16521  df-imas 16522  df-xps 16524  df-mre 16600  df-mrc 16601  df-acs 16603  df-mgm 17596  df-sgrp 17638  df-mnd 17649  df-submnd 17690  df-mulg 17896  df-cntz 18101  df-cmn 18549  df-psmet 20099  df-xmet 20100  df-met 20101  df-bl 20102  df-mopn 20103  df-fbas 20104  df-fg 20105  df-cnfld 20108  df-top 21070  df-topon 21087  df-topsp 21109  df-bases 21122  df-cld 21195  df-ntr 21196  df-cls 21197  df-nei 21274  df-lp 21312  df-perf 21313  df-cn 21403  df-cnp 21404  df-haus 21491  df-cmp 21562  df-tx 21737  df-hmeo 21930  df-fil 22021  df-fm 22113  df-flim 22114  df-flf 22115  df-xms 22496  df-ms 22497  df-tms 22498  df-cncf 23052  df-limc 24030  df-dv 24031  df-log 24703  df-cxp 24704
This theorem is referenced by:  divsqrsumf  25121  divsqrsum  25122  divsqrtsum2  25123
  Copyright terms: Public domain W3C validator