MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divsqrtsumlem Structured version   Visualization version   GIF version

Theorem divsqrtsumlem 26920
Description: Lemma for divsqrsum 26922 and divsqrtsum2 26923. (Contributed by Mario Carneiro, 18-May-2016.)
Hypothesis
Ref Expression
divsqrtsum.2 𝐹 = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑛)) − (2 · (√‘𝑥))))
Assertion
Ref Expression
divsqrtsumlem (𝐹:ℝ+⟶ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ((𝐹𝑟 𝐿𝐴 ∈ ℝ+) → (abs‘((𝐹𝐴) − 𝐿)) ≤ (1 / (√‘𝐴))))
Distinct variable group:   𝑥,𝑛,𝐴
Allowed substitution hints:   𝐹(𝑥,𝑛)   𝐿(𝑥,𝑛)

Proof of Theorem divsqrtsumlem
StepHypRef Expression
1 ioorp 13329 . . . . . 6 (0(,)+∞) = ℝ+
21eqcomi 2742 . . . . 5 + = (0(,)+∞)
3 nnuz 12779 . . . . 5 ℕ = (ℤ‘1)
4 1zzd 12511 . . . . 5 (⊤ → 1 ∈ ℤ)
5 0red 11124 . . . . 5 (⊤ → 0 ∈ ℝ)
6 1re 11121 . . . . . . 7 1 ∈ ℝ
7 0nn0 12405 . . . . . . 7 0 ∈ ℕ0
86, 7nn0addge2i 12439 . . . . . 6 1 ≤ (0 + 1)
98a1i 11 . . . . 5 (⊤ → 1 ≤ (0 + 1))
10 2re 12208 . . . . . 6 2 ∈ ℝ
11 rpsqrtcl 15175 . . . . . . . 8 (𝑥 ∈ ℝ+ → (√‘𝑥) ∈ ℝ+)
1211adantl 481 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ+)
1312rpred 12938 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ)
14 remulcl 11100 . . . . . 6 ((2 ∈ ℝ ∧ (√‘𝑥) ∈ ℝ) → (2 · (√‘𝑥)) ∈ ℝ)
1510, 13, 14sylancr 587 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (2 · (√‘𝑥)) ∈ ℝ)
1612rprecred 12949 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / (√‘𝑥)) ∈ ℝ)
17 nnrp 12906 . . . . . 6 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ+)
1817, 16sylan2 593 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℕ) → (1 / (√‘𝑥)) ∈ ℝ)
19 reelprrecn 11107 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
2019a1i 11 . . . . . . 7 (⊤ → ℝ ∈ {ℝ, ℂ})
2112rpcnd 12940 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℂ)
22 2rp 12899 . . . . . . . . 9 2 ∈ ℝ+
23 rpmulcl 12919 . . . . . . . . 9 ((2 ∈ ℝ+ ∧ (√‘𝑥) ∈ ℝ+) → (2 · (√‘𝑥)) ∈ ℝ+)
2422, 12, 23sylancr 587 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → (2 · (√‘𝑥)) ∈ ℝ+)
2524rpreccld 12948 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / (2 · (√‘𝑥))) ∈ ℝ+)
26 dvsqrt 26681 . . . . . . . 8 (ℝ D (𝑥 ∈ ℝ+ ↦ (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / (2 · (√‘𝑥))))
2726a1i 11 . . . . . . 7 (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / (2 · (√‘𝑥)))))
28 2cnd 12212 . . . . . . 7 (⊤ → 2 ∈ ℂ)
2920, 21, 25, 27, 28dvmptcmul 25898 . . . . . 6 (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (2 · (√‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (2 · (1 / (2 · (√‘𝑥))))))
30 2cnd 12212 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → 2 ∈ ℂ)
31 1cnd 11116 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℂ)
3224rpcnne0d 12947 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((2 · (√‘𝑥)) ∈ ℂ ∧ (2 · (√‘𝑥)) ≠ 0))
33 divass 11803 . . . . . . . . 9 ((2 ∈ ℂ ∧ 1 ∈ ℂ ∧ ((2 · (√‘𝑥)) ∈ ℂ ∧ (2 · (√‘𝑥)) ≠ 0)) → ((2 · 1) / (2 · (√‘𝑥))) = (2 · (1 / (2 · (√‘𝑥)))))
3430, 31, 32, 33syl3anc 1373 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((2 · 1) / (2 · (√‘𝑥))) = (2 · (1 / (2 · (√‘𝑥)))))
3512rpcnne0d 12947 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0))
36 rpcnne0 12913 . . . . . . . . . 10 (2 ∈ ℝ+ → (2 ∈ ℂ ∧ 2 ≠ 0))
3722, 36mp1i 13 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → (2 ∈ ℂ ∧ 2 ≠ 0))
38 divcan5 11832 . . . . . . . . 9 ((1 ∈ ℂ ∧ ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((2 · 1) / (2 · (√‘𝑥))) = (1 / (√‘𝑥)))
3931, 35, 37, 38syl3anc 1373 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((2 · 1) / (2 · (√‘𝑥))) = (1 / (√‘𝑥)))
4034, 39eqtr3d 2770 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (2 · (1 / (2 · (√‘𝑥)))) = (1 / (√‘𝑥)))
4140mpteq2dva 5188 . . . . . 6 (⊤ → (𝑥 ∈ ℝ+ ↦ (2 · (1 / (2 · (√‘𝑥))))) = (𝑥 ∈ ℝ+ ↦ (1 / (√‘𝑥))))
4229, 41eqtrd 2768 . . . . 5 (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (2 · (√‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (1 / (√‘𝑥))))
43 fveq2 6830 . . . . . 6 (𝑥 = 𝑛 → (√‘𝑥) = (√‘𝑛))
4443oveq2d 7370 . . . . 5 (𝑥 = 𝑛 → (1 / (√‘𝑥)) = (1 / (√‘𝑛)))
45 simp3r 1203 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → 𝑥𝑛)
46 simp2l 1200 . . . . . . . . 9 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → 𝑥 ∈ ℝ+)
4746rprege0d 12945 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
48 simp2r 1201 . . . . . . . . 9 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → 𝑛 ∈ ℝ+)
4948rprege0d 12945 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → (𝑛 ∈ ℝ ∧ 0 ≤ 𝑛))
50 sqrtle 15171 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑛 ∈ ℝ ∧ 0 ≤ 𝑛)) → (𝑥𝑛 ↔ (√‘𝑥) ≤ (√‘𝑛)))
5147, 49, 50syl2anc 584 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → (𝑥𝑛 ↔ (√‘𝑥) ≤ (√‘𝑛)))
5245, 51mpbid 232 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → (√‘𝑥) ≤ (√‘𝑛))
5346rpsqrtcld 15323 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → (√‘𝑥) ∈ ℝ+)
5448rpsqrtcld 15323 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → (√‘𝑛) ∈ ℝ+)
5553, 54lerecd 12957 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → ((√‘𝑥) ≤ (√‘𝑛) ↔ (1 / (√‘𝑛)) ≤ (1 / (√‘𝑥))))
5652, 55mpbid 232 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → (1 / (√‘𝑛)) ≤ (1 / (√‘𝑥)))
57 divsqrtsum.2 . . . . 5 𝐹 = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑛)) − (2 · (√‘𝑥))))
58 sqrtlim 26913 . . . . . 6 (𝑥 ∈ ℝ+ ↦ (1 / (√‘𝑥))) ⇝𝑟 0
5958a1i 11 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ (1 / (√‘𝑥))) ⇝𝑟 0)
60 fveq2 6830 . . . . . 6 (𝑥 = 𝐴 → (√‘𝑥) = (√‘𝐴))
6160oveq2d 7370 . . . . 5 (𝑥 = 𝐴 → (1 / (√‘𝑥)) = (1 / (√‘𝐴)))
622, 3, 4, 5, 9, 5, 15, 16, 18, 42, 44, 56, 57, 59, 61dvfsumrlim3 25970 . . . 4 (⊤ → (𝐹:ℝ+⟶ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ((𝐹𝑟 𝐿𝐴 ∈ ℝ+ ∧ 0 ≤ 𝐴) → (abs‘((𝐹𝐴) − 𝐿)) ≤ (1 / (√‘𝐴)))))
6362simp1d 1142 . . 3 (⊤ → 𝐹:ℝ+⟶ℝ)
6463mptru 1548 . 2 𝐹:ℝ+⟶ℝ
6562simp2d 1143 . . 3 (⊤ → 𝐹 ∈ dom ⇝𝑟 )
6665mptru 1548 . 2 𝐹 ∈ dom ⇝𝑟
67 rpge0 12908 . . . 4 (𝐴 ∈ ℝ+ → 0 ≤ 𝐴)
6867adantl 481 . . 3 ((𝐹𝑟 𝐿𝐴 ∈ ℝ+) → 0 ≤ 𝐴)
6962simp3d 1144 . . . 4 (⊤ → ((𝐹𝑟 𝐿𝐴 ∈ ℝ+ ∧ 0 ≤ 𝐴) → (abs‘((𝐹𝐴) − 𝐿)) ≤ (1 / (√‘𝐴))))
7069mptru 1548 . . 3 ((𝐹𝑟 𝐿𝐴 ∈ ℝ+ ∧ 0 ≤ 𝐴) → (abs‘((𝐹𝐴) − 𝐿)) ≤ (1 / (√‘𝐴)))
7168, 70mpd3an3 1464 . 2 ((𝐹𝑟 𝐿𝐴 ∈ ℝ+) → (abs‘((𝐹𝐴) − 𝐿)) ≤ (1 / (√‘𝐴)))
7264, 66, 713pm3.2i 1340 1 (𝐹:ℝ+⟶ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ((𝐹𝑟 𝐿𝐴 ∈ ℝ+) → (abs‘((𝐹𝐴) − 𝐿)) ≤ (1 / (√‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wtru 1542  wcel 2113  wne 2929  {cpr 4579   class class class wbr 5095  cmpt 5176  dom cdm 5621  wf 6484  cfv 6488  (class class class)co 7354  cc 11013  cr 11014  0cc0 11015  1c1 11016   + caddc 11018   · cmul 11020  +∞cpnf 11152  cle 11156  cmin 11353   / cdiv 11783  cn 12134  2c2 12189  +crp 12894  (,)cioo 13249  ...cfz 13411  cfl 13698  csqrt 15144  abscabs 15145  𝑟 crli 15396  Σcsu 15597   D cdv 25794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-inf2 9540  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093  ax-addf 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-of 7618  df-om 7805  df-1st 7929  df-2nd 7930  df-supp 8099  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-2o 8394  df-er 8630  df-map 8760  df-pm 8761  df-ixp 8830  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-fsupp 9255  df-fi 9304  df-sup 9335  df-inf 9336  df-oi 9405  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-z 12478  df-dec 12597  df-uz 12741  df-q 12851  df-rp 12895  df-xneg 13015  df-xadd 13016  df-xmul 13017  df-ioo 13253  df-ioc 13254  df-ico 13255  df-icc 13256  df-fz 13412  df-fzo 13559  df-fl 13700  df-mod 13778  df-seq 13913  df-exp 13973  df-fac 14185  df-bc 14214  df-hash 14242  df-shft 14978  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-limsup 15382  df-clim 15399  df-rlim 15400  df-sum 15598  df-ef 15978  df-sin 15980  df-cos 15981  df-pi 15983  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-starv 17180  df-sca 17181  df-vsca 17182  df-ip 17183  df-tset 17184  df-ple 17185  df-ds 17187  df-unif 17188  df-hom 17189  df-cco 17190  df-rest 17330  df-topn 17331  df-0g 17349  df-gsum 17350  df-topgen 17351  df-pt 17352  df-prds 17355  df-xrs 17410  df-qtop 17415  df-imas 17416  df-xps 17418  df-mre 17492  df-mrc 17493  df-acs 17495  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-submnd 18696  df-mulg 18985  df-cntz 19233  df-cmn 19698  df-psmet 21287  df-xmet 21288  df-met 21289  df-bl 21290  df-mopn 21291  df-fbas 21292  df-fg 21293  df-cnfld 21296  df-top 22812  df-topon 22829  df-topsp 22851  df-bases 22864  df-cld 22937  df-ntr 22938  df-cls 22939  df-nei 23016  df-lp 23054  df-perf 23055  df-cn 23145  df-cnp 23146  df-haus 23233  df-cmp 23305  df-tx 23480  df-hmeo 23673  df-fil 23764  df-fm 23856  df-flim 23857  df-flf 23858  df-xms 24238  df-ms 24239  df-tms 24240  df-cncf 24801  df-limc 25797  df-dv 25798  df-log 26495  df-cxp 26496
This theorem is referenced by:  divsqrsumf  26921  divsqrsum  26922  divsqrtsum2  26923
  Copyright terms: Public domain W3C validator