MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divsqrtsumlem Structured version   Visualization version   GIF version

Theorem divsqrtsumlem 26942
Description: Lemma for divsqrsum 26944 and divsqrtsum2 26945. (Contributed by Mario Carneiro, 18-May-2016.)
Hypothesis
Ref Expression
divsqrtsum.2 𝐹 = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑛)) − (2 · (√‘𝑥))))
Assertion
Ref Expression
divsqrtsumlem (𝐹:ℝ+⟶ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ((𝐹𝑟 𝐿𝐴 ∈ ℝ+) → (abs‘((𝐹𝐴) − 𝐿)) ≤ (1 / (√‘𝐴))))
Distinct variable group:   𝑥,𝑛,𝐴
Allowed substitution hints:   𝐹(𝑥,𝑛)   𝐿(𝑥,𝑛)

Proof of Theorem divsqrtsumlem
StepHypRef Expression
1 ioorp 13442 . . . . . 6 (0(,)+∞) = ℝ+
21eqcomi 2744 . . . . 5 + = (0(,)+∞)
3 nnuz 12895 . . . . 5 ℕ = (ℤ‘1)
4 1zzd 12623 . . . . 5 (⊤ → 1 ∈ ℤ)
5 0red 11238 . . . . 5 (⊤ → 0 ∈ ℝ)
6 1re 11235 . . . . . . 7 1 ∈ ℝ
7 0nn0 12516 . . . . . . 7 0 ∈ ℕ0
86, 7nn0addge2i 12550 . . . . . 6 1 ≤ (0 + 1)
98a1i 11 . . . . 5 (⊤ → 1 ≤ (0 + 1))
10 2re 12314 . . . . . 6 2 ∈ ℝ
11 rpsqrtcl 15283 . . . . . . . 8 (𝑥 ∈ ℝ+ → (√‘𝑥) ∈ ℝ+)
1211adantl 481 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ+)
1312rpred 13051 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ)
14 remulcl 11214 . . . . . 6 ((2 ∈ ℝ ∧ (√‘𝑥) ∈ ℝ) → (2 · (√‘𝑥)) ∈ ℝ)
1510, 13, 14sylancr 587 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (2 · (√‘𝑥)) ∈ ℝ)
1612rprecred 13062 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / (√‘𝑥)) ∈ ℝ)
17 nnrp 13020 . . . . . 6 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ+)
1817, 16sylan2 593 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℕ) → (1 / (√‘𝑥)) ∈ ℝ)
19 reelprrecn 11221 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
2019a1i 11 . . . . . . 7 (⊤ → ℝ ∈ {ℝ, ℂ})
2112rpcnd 13053 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℂ)
22 2rp 13013 . . . . . . . . 9 2 ∈ ℝ+
23 rpmulcl 13032 . . . . . . . . 9 ((2 ∈ ℝ+ ∧ (√‘𝑥) ∈ ℝ+) → (2 · (√‘𝑥)) ∈ ℝ+)
2422, 12, 23sylancr 587 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → (2 · (√‘𝑥)) ∈ ℝ+)
2524rpreccld 13061 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / (2 · (√‘𝑥))) ∈ ℝ+)
26 dvsqrt 26703 . . . . . . . 8 (ℝ D (𝑥 ∈ ℝ+ ↦ (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / (2 · (√‘𝑥))))
2726a1i 11 . . . . . . 7 (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / (2 · (√‘𝑥)))))
28 2cnd 12318 . . . . . . 7 (⊤ → 2 ∈ ℂ)
2920, 21, 25, 27, 28dvmptcmul 25920 . . . . . 6 (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (2 · (√‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (2 · (1 / (2 · (√‘𝑥))))))
30 2cnd 12318 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → 2 ∈ ℂ)
31 1cnd 11230 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℂ)
3224rpcnne0d 13060 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((2 · (√‘𝑥)) ∈ ℂ ∧ (2 · (√‘𝑥)) ≠ 0))
33 divass 11914 . . . . . . . . 9 ((2 ∈ ℂ ∧ 1 ∈ ℂ ∧ ((2 · (√‘𝑥)) ∈ ℂ ∧ (2 · (√‘𝑥)) ≠ 0)) → ((2 · 1) / (2 · (√‘𝑥))) = (2 · (1 / (2 · (√‘𝑥)))))
3430, 31, 32, 33syl3anc 1373 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((2 · 1) / (2 · (√‘𝑥))) = (2 · (1 / (2 · (√‘𝑥)))))
3512rpcnne0d 13060 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0))
36 rpcnne0 13027 . . . . . . . . . 10 (2 ∈ ℝ+ → (2 ∈ ℂ ∧ 2 ≠ 0))
3722, 36mp1i 13 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → (2 ∈ ℂ ∧ 2 ≠ 0))
38 divcan5 11943 . . . . . . . . 9 ((1 ∈ ℂ ∧ ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((2 · 1) / (2 · (√‘𝑥))) = (1 / (√‘𝑥)))
3931, 35, 37, 38syl3anc 1373 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((2 · 1) / (2 · (√‘𝑥))) = (1 / (√‘𝑥)))
4034, 39eqtr3d 2772 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (2 · (1 / (2 · (√‘𝑥)))) = (1 / (√‘𝑥)))
4140mpteq2dva 5214 . . . . . 6 (⊤ → (𝑥 ∈ ℝ+ ↦ (2 · (1 / (2 · (√‘𝑥))))) = (𝑥 ∈ ℝ+ ↦ (1 / (√‘𝑥))))
4229, 41eqtrd 2770 . . . . 5 (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (2 · (√‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (1 / (√‘𝑥))))
43 fveq2 6876 . . . . . 6 (𝑥 = 𝑛 → (√‘𝑥) = (√‘𝑛))
4443oveq2d 7421 . . . . 5 (𝑥 = 𝑛 → (1 / (√‘𝑥)) = (1 / (√‘𝑛)))
45 simp3r 1203 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → 𝑥𝑛)
46 simp2l 1200 . . . . . . . . 9 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → 𝑥 ∈ ℝ+)
4746rprege0d 13058 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
48 simp2r 1201 . . . . . . . . 9 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → 𝑛 ∈ ℝ+)
4948rprege0d 13058 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → (𝑛 ∈ ℝ ∧ 0 ≤ 𝑛))
50 sqrtle 15279 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑛 ∈ ℝ ∧ 0 ≤ 𝑛)) → (𝑥𝑛 ↔ (√‘𝑥) ≤ (√‘𝑛)))
5147, 49, 50syl2anc 584 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → (𝑥𝑛 ↔ (√‘𝑥) ≤ (√‘𝑛)))
5245, 51mpbid 232 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → (√‘𝑥) ≤ (√‘𝑛))
5346rpsqrtcld 15430 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → (√‘𝑥) ∈ ℝ+)
5448rpsqrtcld 15430 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → (√‘𝑛) ∈ ℝ+)
5553, 54lerecd 13070 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → ((√‘𝑥) ≤ (√‘𝑛) ↔ (1 / (√‘𝑛)) ≤ (1 / (√‘𝑥))))
5652, 55mpbid 232 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → (1 / (√‘𝑛)) ≤ (1 / (√‘𝑥)))
57 divsqrtsum.2 . . . . 5 𝐹 = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑛)) − (2 · (√‘𝑥))))
58 sqrtlim 26935 . . . . . 6 (𝑥 ∈ ℝ+ ↦ (1 / (√‘𝑥))) ⇝𝑟 0
5958a1i 11 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ (1 / (√‘𝑥))) ⇝𝑟 0)
60 fveq2 6876 . . . . . 6 (𝑥 = 𝐴 → (√‘𝑥) = (√‘𝐴))
6160oveq2d 7421 . . . . 5 (𝑥 = 𝐴 → (1 / (√‘𝑥)) = (1 / (√‘𝐴)))
622, 3, 4, 5, 9, 5, 15, 16, 18, 42, 44, 56, 57, 59, 61dvfsumrlim3 25992 . . . 4 (⊤ → (𝐹:ℝ+⟶ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ((𝐹𝑟 𝐿𝐴 ∈ ℝ+ ∧ 0 ≤ 𝐴) → (abs‘((𝐹𝐴) − 𝐿)) ≤ (1 / (√‘𝐴)))))
6362simp1d 1142 . . 3 (⊤ → 𝐹:ℝ+⟶ℝ)
6463mptru 1547 . 2 𝐹:ℝ+⟶ℝ
6562simp2d 1143 . . 3 (⊤ → 𝐹 ∈ dom ⇝𝑟 )
6665mptru 1547 . 2 𝐹 ∈ dom ⇝𝑟
67 rpge0 13022 . . . 4 (𝐴 ∈ ℝ+ → 0 ≤ 𝐴)
6867adantl 481 . . 3 ((𝐹𝑟 𝐿𝐴 ∈ ℝ+) → 0 ≤ 𝐴)
6962simp3d 1144 . . . 4 (⊤ → ((𝐹𝑟 𝐿𝐴 ∈ ℝ+ ∧ 0 ≤ 𝐴) → (abs‘((𝐹𝐴) − 𝐿)) ≤ (1 / (√‘𝐴))))
7069mptru 1547 . . 3 ((𝐹𝑟 𝐿𝐴 ∈ ℝ+ ∧ 0 ≤ 𝐴) → (abs‘((𝐹𝐴) − 𝐿)) ≤ (1 / (√‘𝐴)))
7168, 70mpd3an3 1464 . 2 ((𝐹𝑟 𝐿𝐴 ∈ ℝ+) → (abs‘((𝐹𝐴) − 𝐿)) ≤ (1 / (√‘𝐴)))
7264, 66, 713pm3.2i 1340 1 (𝐹:ℝ+⟶ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ((𝐹𝑟 𝐿𝐴 ∈ ℝ+) → (abs‘((𝐹𝐴) − 𝐿)) ≤ (1 / (√‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2108  wne 2932  {cpr 4603   class class class wbr 5119  cmpt 5201  dom cdm 5654  wf 6527  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134  +∞cpnf 11266  cle 11270  cmin 11466   / cdiv 11894  cn 12240  2c2 12295  +crp 13008  (,)cioo 13362  ...cfz 13524  cfl 13807  csqrt 15252  abscabs 15253  𝑟 crli 15501  Σcsu 15702   D cdv 25816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-ef 16083  df-sin 16085  df-cos 16086  df-pi 16088  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-cmp 23325  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-limc 25819  df-dv 25820  df-log 26517  df-cxp 26518
This theorem is referenced by:  divsqrsumf  26943  divsqrsum  26944  divsqrtsum2  26945
  Copyright terms: Public domain W3C validator