Step | Hyp | Ref
| Expression |
1 | | ioorp 13271 |
. . . . . 6
β’
(0(,)+β) = β+ |
2 | 1 | eqcomi 2747 |
. . . . 5
β’
β+ = (0(,)+β) |
3 | | nnuz 12735 |
. . . . 5
β’ β =
(β€β₯β1) |
4 | | 1zzd 12465 |
. . . . 5
β’ (β€
β 1 β β€) |
5 | | 0red 11092 |
. . . . 5
β’ (β€
β 0 β β) |
6 | | 1re 11089 |
. . . . . . 7
β’ 1 β
β |
7 | | 0nn0 12362 |
. . . . . . 7
β’ 0 β
β0 |
8 | 6, 7 | nn0addge2i 12396 |
. . . . . 6
β’ 1 β€ (0
+ 1) |
9 | 8 | a1i 11 |
. . . . 5
β’ (β€
β 1 β€ (0 + 1)) |
10 | | 2re 12161 |
. . . . . 6
β’ 2 β
β |
11 | | rpsqrtcl 15084 |
. . . . . . . 8
β’ (π₯ β β+
β (ββπ₯)
β β+) |
12 | 11 | adantl 483 |
. . . . . . 7
β’
((β€ β§ π₯
β β+) β (ββπ₯) β
β+) |
13 | 12 | rpred 12886 |
. . . . . 6
β’
((β€ β§ π₯
β β+) β (ββπ₯) β β) |
14 | | remulcl 11070 |
. . . . . 6
β’ ((2
β β β§ (ββπ₯) β β) β (2 Β·
(ββπ₯)) β
β) |
15 | 10, 13, 14 | sylancr 588 |
. . . . 5
β’
((β€ β§ π₯
β β+) β (2 Β· (ββπ₯)) β
β) |
16 | 12 | rprecred 12897 |
. . . . 5
β’
((β€ β§ π₯
β β+) β (1 / (ββπ₯)) β β) |
17 | | nnrp 12855 |
. . . . . 6
β’ (π₯ β β β π₯ β
β+) |
18 | 17, 16 | sylan2 594 |
. . . . 5
β’
((β€ β§ π₯
β β) β (1 / (ββπ₯)) β β) |
19 | | reelprrecn 11077 |
. . . . . . . 8
β’ β
β {β, β} |
20 | 19 | a1i 11 |
. . . . . . 7
β’ (β€
β β β {β, β}) |
21 | 12 | rpcnd 12888 |
. . . . . . 7
β’
((β€ β§ π₯
β β+) β (ββπ₯) β β) |
22 | | 2rp 12849 |
. . . . . . . . 9
β’ 2 β
β+ |
23 | | rpmulcl 12867 |
. . . . . . . . 9
β’ ((2
β β+ β§ (ββπ₯) β β+) β (2
Β· (ββπ₯))
β β+) |
24 | 22, 12, 23 | sylancr 588 |
. . . . . . . 8
β’
((β€ β§ π₯
β β+) β (2 Β· (ββπ₯)) β
β+) |
25 | 24 | rpreccld 12896 |
. . . . . . 7
β’
((β€ β§ π₯
β β+) β (1 / (2 Β· (ββπ₯))) β
β+) |
26 | | dvsqrt 26018 |
. . . . . . . 8
β’ (β
D (π₯ β
β+ β¦ (ββπ₯))) = (π₯ β β+ β¦ (1 / (2
Β· (ββπ₯)))) |
27 | 26 | a1i 11 |
. . . . . . 7
β’ (β€
β (β D (π₯ β
β+ β¦ (ββπ₯))) = (π₯ β β+ β¦ (1 / (2
Β· (ββπ₯))))) |
28 | | 2cnd 12165 |
. . . . . . 7
β’ (β€
β 2 β β) |
29 | 20, 21, 25, 27, 28 | dvmptcmul 25251 |
. . . . . 6
β’ (β€
β (β D (π₯ β
β+ β¦ (2 Β· (ββπ₯)))) = (π₯ β β+ β¦ (2
Β· (1 / (2 Β· (ββπ₯)))))) |
30 | | 2cnd 12165 |
. . . . . . . . 9
β’
((β€ β§ π₯
β β+) β 2 β β) |
31 | | 1cnd 11084 |
. . . . . . . . 9
β’
((β€ β§ π₯
β β+) β 1 β β) |
32 | 24 | rpcnne0d 12895 |
. . . . . . . . 9
β’
((β€ β§ π₯
β β+) β ((2 Β· (ββπ₯)) β β β§ (2
Β· (ββπ₯))
β 0)) |
33 | | divass 11765 |
. . . . . . . . 9
β’ ((2
β β β§ 1 β β β§ ((2 Β· (ββπ₯)) β β β§ (2
Β· (ββπ₯))
β 0)) β ((2 Β· 1) / (2 Β· (ββπ₯))) = (2 Β· (1 / (2 Β·
(ββπ₯))))) |
34 | 30, 31, 32, 33 | syl3anc 1372 |
. . . . . . . 8
β’
((β€ β§ π₯
β β+) β ((2 Β· 1) / (2 Β·
(ββπ₯))) = (2
Β· (1 / (2 Β· (ββπ₯))))) |
35 | 12 | rpcnne0d 12895 |
. . . . . . . . 9
β’
((β€ β§ π₯
β β+) β ((ββπ₯) β β β§ (ββπ₯) β 0)) |
36 | | rpcnne0 12862 |
. . . . . . . . . 10
β’ (2 β
β+ β (2 β β β§ 2 β 0)) |
37 | 22, 36 | mp1i 13 |
. . . . . . . . 9
β’
((β€ β§ π₯
β β+) β (2 β β β§ 2 β
0)) |
38 | | divcan5 11791 |
. . . . . . . . 9
β’ ((1
β β β§ ((ββπ₯) β β β§ (ββπ₯) β 0) β§ (2 β
β β§ 2 β 0)) β ((2 Β· 1) / (2 Β·
(ββπ₯))) = (1 /
(ββπ₯))) |
39 | 31, 35, 37, 38 | syl3anc 1372 |
. . . . . . . 8
β’
((β€ β§ π₯
β β+) β ((2 Β· 1) / (2 Β·
(ββπ₯))) = (1 /
(ββπ₯))) |
40 | 34, 39 | eqtr3d 2780 |
. . . . . . 7
β’
((β€ β§ π₯
β β+) β (2 Β· (1 / (2 Β·
(ββπ₯)))) = (1 /
(ββπ₯))) |
41 | 40 | mpteq2dva 5204 |
. . . . . 6
β’ (β€
β (π₯ β
β+ β¦ (2 Β· (1 / (2 Β· (ββπ₯))))) = (π₯ β β+ β¦ (1 /
(ββπ₯)))) |
42 | 29, 41 | eqtrd 2778 |
. . . . 5
β’ (β€
β (β D (π₯ β
β+ β¦ (2 Β· (ββπ₯)))) = (π₯ β β+ β¦ (1 /
(ββπ₯)))) |
43 | | fveq2 6838 |
. . . . . 6
β’ (π₯ = π β (ββπ₯) = (ββπ)) |
44 | 43 | oveq2d 7366 |
. . . . 5
β’ (π₯ = π β (1 / (ββπ₯)) = (1 / (ββπ))) |
45 | | simp3r 1203 |
. . . . . . 7
β’
((β€ β§ (π₯
β β+ β§ π β β+) β§ (0 β€
π₯ β§ π₯ β€ π)) β π₯ β€ π) |
46 | | simp2l 1200 |
. . . . . . . . 9
β’
((β€ β§ (π₯
β β+ β§ π β β+) β§ (0 β€
π₯ β§ π₯ β€ π)) β π₯ β β+) |
47 | 46 | rprege0d 12893 |
. . . . . . . 8
β’
((β€ β§ (π₯
β β+ β§ π β β+) β§ (0 β€
π₯ β§ π₯ β€ π)) β (π₯ β β β§ 0 β€ π₯)) |
48 | | simp2r 1201 |
. . . . . . . . 9
β’
((β€ β§ (π₯
β β+ β§ π β β+) β§ (0 β€
π₯ β§ π₯ β€ π)) β π β β+) |
49 | 48 | rprege0d 12893 |
. . . . . . . 8
β’
((β€ β§ (π₯
β β+ β§ π β β+) β§ (0 β€
π₯ β§ π₯ β€ π)) β (π β β β§ 0 β€ π)) |
50 | | sqrtle 15080 |
. . . . . . . 8
β’ (((π₯ β β β§ 0 β€
π₯) β§ (π β β β§ 0 β€
π)) β (π₯ β€ π β (ββπ₯) β€ (ββπ))) |
51 | 47, 49, 50 | syl2anc 585 |
. . . . . . 7
β’
((β€ β§ (π₯
β β+ β§ π β β+) β§ (0 β€
π₯ β§ π₯ β€ π)) β (π₯ β€ π β (ββπ₯) β€ (ββπ))) |
52 | 45, 51 | mpbid 231 |
. . . . . 6
β’
((β€ β§ (π₯
β β+ β§ π β β+) β§ (0 β€
π₯ β§ π₯ β€ π)) β (ββπ₯) β€ (ββπ)) |
53 | 46 | rpsqrtcld 15231 |
. . . . . . 7
β’
((β€ β§ (π₯
β β+ β§ π β β+) β§ (0 β€
π₯ β§ π₯ β€ π)) β (ββπ₯) β
β+) |
54 | 48 | rpsqrtcld 15231 |
. . . . . . 7
β’
((β€ β§ (π₯
β β+ β§ π β β+) β§ (0 β€
π₯ β§ π₯ β€ π)) β (ββπ) β
β+) |
55 | 53, 54 | lerecd 12905 |
. . . . . 6
β’
((β€ β§ (π₯
β β+ β§ π β β+) β§ (0 β€
π₯ β§ π₯ β€ π)) β ((ββπ₯) β€ (ββπ) β (1 / (ββπ)) β€ (1 /
(ββπ₯)))) |
56 | 52, 55 | mpbid 231 |
. . . . 5
β’
((β€ β§ (π₯
β β+ β§ π β β+) β§ (0 β€
π₯ β§ π₯ β€ π)) β (1 / (ββπ)) β€ (1 /
(ββπ₯))) |
57 | | divsqrtsum.2 |
. . . . 5
β’ πΉ = (π₯ β β+ β¦
(Ξ£π β
(1...(ββπ₯))(1 /
(ββπ)) β
(2 Β· (ββπ₯)))) |
58 | | sqrtlim 26245 |
. . . . . 6
β’ (π₯ β β+
β¦ (1 / (ββπ₯))) βπ
0 |
59 | 58 | a1i 11 |
. . . . 5
β’ (β€
β (π₯ β
β+ β¦ (1 / (ββπ₯))) βπ
0) |
60 | | fveq2 6838 |
. . . . . 6
β’ (π₯ = π΄ β (ββπ₯) = (ββπ΄)) |
61 | 60 | oveq2d 7366 |
. . . . 5
β’ (π₯ = π΄ β (1 / (ββπ₯)) = (1 / (ββπ΄))) |
62 | 2, 3, 4, 5, 9, 5, 15, 16, 18, 42, 44, 56, 57, 59, 61 | dvfsumrlim3 25320 |
. . . 4
β’ (β€
β (πΉ:β+βΆβ β§
πΉ β dom
βπ β§ ((πΉ βπ πΏ β§ π΄ β β+ β§ 0 β€
π΄) β
(absβ((πΉβπ΄) β πΏ)) β€ (1 / (ββπ΄))))) |
63 | 62 | simp1d 1143 |
. . 3
β’ (β€
β πΉ:β+βΆβ) |
64 | 63 | mptru 1549 |
. 2
β’ πΉ:β+βΆβ |
65 | 62 | simp2d 1144 |
. . 3
β’ (β€
β πΉ β dom
βπ ) |
66 | 65 | mptru 1549 |
. 2
β’ πΉ β dom
βπ |
67 | | rpge0 12857 |
. . . 4
β’ (π΄ β β+
β 0 β€ π΄) |
68 | 67 | adantl 483 |
. . 3
β’ ((πΉ βπ
πΏ β§ π΄ β β+) β 0 β€
π΄) |
69 | 62 | simp3d 1145 |
. . . 4
β’ (β€
β ((πΉ
βπ πΏ β§ π΄ β β+ β§ 0 β€
π΄) β
(absβ((πΉβπ΄) β πΏ)) β€ (1 / (ββπ΄)))) |
70 | 69 | mptru 1549 |
. . 3
β’ ((πΉ βπ
πΏ β§ π΄ β β+ β§ 0 β€
π΄) β
(absβ((πΉβπ΄) β πΏ)) β€ (1 / (ββπ΄))) |
71 | 68, 70 | mpd3an3 1463 |
. 2
β’ ((πΉ βπ
πΏ β§ π΄ β β+) β
(absβ((πΉβπ΄) β πΏ)) β€ (1 / (ββπ΄))) |
72 | 64, 66, 71 | 3pm3.2i 1340 |
1
β’ (πΉ:β+βΆβ β§
πΉ β dom
βπ β§ ((πΉ βπ πΏ β§ π΄ β β+) β
(absβ((πΉβπ΄) β πΏ)) β€ (1 / (ββπ΄)))) |