MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divsqrtsumlem Structured version   Visualization version   GIF version

Theorem divsqrtsumlem 25559
Description: Lemma for divsqrsum 25561 and divsqrtsum2 25562. (Contributed by Mario Carneiro, 18-May-2016.)
Hypothesis
Ref Expression
divsqrtsum.2 𝐹 = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑛)) − (2 · (√‘𝑥))))
Assertion
Ref Expression
divsqrtsumlem (𝐹:ℝ+⟶ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ((𝐹𝑟 𝐿𝐴 ∈ ℝ+) → (abs‘((𝐹𝐴) − 𝐿)) ≤ (1 / (√‘𝐴))))
Distinct variable group:   𝑥,𝑛,𝐴
Allowed substitution hints:   𝐹(𝑥,𝑛)   𝐿(𝑥,𝑛)

Proof of Theorem divsqrtsumlem
StepHypRef Expression
1 ioorp 12817 . . . . . 6 (0(,)+∞) = ℝ+
21eqcomi 2832 . . . . 5 + = (0(,)+∞)
3 nnuz 12284 . . . . 5 ℕ = (ℤ‘1)
4 1zzd 12016 . . . . 5 (⊤ → 1 ∈ ℤ)
5 0red 10646 . . . . 5 (⊤ → 0 ∈ ℝ)
6 1re 10643 . . . . . . 7 1 ∈ ℝ
7 0nn0 11915 . . . . . . 7 0 ∈ ℕ0
86, 7nn0addge2i 11949 . . . . . 6 1 ≤ (0 + 1)
98a1i 11 . . . . 5 (⊤ → 1 ≤ (0 + 1))
10 2re 11714 . . . . . 6 2 ∈ ℝ
11 rpsqrtcl 14626 . . . . . . . 8 (𝑥 ∈ ℝ+ → (√‘𝑥) ∈ ℝ+)
1211adantl 484 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ+)
1312rpred 12434 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ)
14 remulcl 10624 . . . . . 6 ((2 ∈ ℝ ∧ (√‘𝑥) ∈ ℝ) → (2 · (√‘𝑥)) ∈ ℝ)
1510, 13, 14sylancr 589 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (2 · (√‘𝑥)) ∈ ℝ)
1612rprecred 12445 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / (√‘𝑥)) ∈ ℝ)
17 nnrp 12403 . . . . . 6 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ+)
1817, 16sylan2 594 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℕ) → (1 / (√‘𝑥)) ∈ ℝ)
19 reelprrecn 10631 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
2019a1i 11 . . . . . . 7 (⊤ → ℝ ∈ {ℝ, ℂ})
2112rpcnd 12436 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℂ)
22 2rp 12397 . . . . . . . . 9 2 ∈ ℝ+
23 rpmulcl 12415 . . . . . . . . 9 ((2 ∈ ℝ+ ∧ (√‘𝑥) ∈ ℝ+) → (2 · (√‘𝑥)) ∈ ℝ+)
2422, 12, 23sylancr 589 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → (2 · (√‘𝑥)) ∈ ℝ+)
2524rpreccld 12444 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / (2 · (√‘𝑥))) ∈ ℝ+)
26 dvsqrt 25325 . . . . . . . 8 (ℝ D (𝑥 ∈ ℝ+ ↦ (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / (2 · (√‘𝑥))))
2726a1i 11 . . . . . . 7 (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / (2 · (√‘𝑥)))))
28 2cnd 11718 . . . . . . 7 (⊤ → 2 ∈ ℂ)
2920, 21, 25, 27, 28dvmptcmul 24563 . . . . . 6 (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (2 · (√‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (2 · (1 / (2 · (√‘𝑥))))))
30 2cnd 11718 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → 2 ∈ ℂ)
31 1cnd 10638 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℂ)
3224rpcnne0d 12443 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((2 · (√‘𝑥)) ∈ ℂ ∧ (2 · (√‘𝑥)) ≠ 0))
33 divass 11318 . . . . . . . . 9 ((2 ∈ ℂ ∧ 1 ∈ ℂ ∧ ((2 · (√‘𝑥)) ∈ ℂ ∧ (2 · (√‘𝑥)) ≠ 0)) → ((2 · 1) / (2 · (√‘𝑥))) = (2 · (1 / (2 · (√‘𝑥)))))
3430, 31, 32, 33syl3anc 1367 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((2 · 1) / (2 · (√‘𝑥))) = (2 · (1 / (2 · (√‘𝑥)))))
3512rpcnne0d 12443 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0))
36 rpcnne0 12410 . . . . . . . . . 10 (2 ∈ ℝ+ → (2 ∈ ℂ ∧ 2 ≠ 0))
3722, 36mp1i 13 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → (2 ∈ ℂ ∧ 2 ≠ 0))
38 divcan5 11344 . . . . . . . . 9 ((1 ∈ ℂ ∧ ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((2 · 1) / (2 · (√‘𝑥))) = (1 / (√‘𝑥)))
3931, 35, 37, 38syl3anc 1367 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((2 · 1) / (2 · (√‘𝑥))) = (1 / (√‘𝑥)))
4034, 39eqtr3d 2860 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (2 · (1 / (2 · (√‘𝑥)))) = (1 / (√‘𝑥)))
4140mpteq2dva 5163 . . . . . 6 (⊤ → (𝑥 ∈ ℝ+ ↦ (2 · (1 / (2 · (√‘𝑥))))) = (𝑥 ∈ ℝ+ ↦ (1 / (√‘𝑥))))
4229, 41eqtrd 2858 . . . . 5 (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (2 · (√‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (1 / (√‘𝑥))))
43 fveq2 6672 . . . . . 6 (𝑥 = 𝑛 → (√‘𝑥) = (√‘𝑛))
4443oveq2d 7174 . . . . 5 (𝑥 = 𝑛 → (1 / (√‘𝑥)) = (1 / (√‘𝑛)))
45 simp3r 1198 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → 𝑥𝑛)
46 simp2l 1195 . . . . . . . . 9 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → 𝑥 ∈ ℝ+)
4746rprege0d 12441 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
48 simp2r 1196 . . . . . . . . 9 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → 𝑛 ∈ ℝ+)
4948rprege0d 12441 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → (𝑛 ∈ ℝ ∧ 0 ≤ 𝑛))
50 sqrtle 14622 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑛 ∈ ℝ ∧ 0 ≤ 𝑛)) → (𝑥𝑛 ↔ (√‘𝑥) ≤ (√‘𝑛)))
5147, 49, 50syl2anc 586 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → (𝑥𝑛 ↔ (√‘𝑥) ≤ (√‘𝑛)))
5245, 51mpbid 234 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → (√‘𝑥) ≤ (√‘𝑛))
5346rpsqrtcld 14773 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → (√‘𝑥) ∈ ℝ+)
5448rpsqrtcld 14773 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → (√‘𝑛) ∈ ℝ+)
5553, 54lerecd 12453 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → ((√‘𝑥) ≤ (√‘𝑛) ↔ (1 / (√‘𝑛)) ≤ (1 / (√‘𝑥))))
5652, 55mpbid 234 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → (1 / (√‘𝑛)) ≤ (1 / (√‘𝑥)))
57 divsqrtsum.2 . . . . 5 𝐹 = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑛)) − (2 · (√‘𝑥))))
58 sqrtlim 25552 . . . . . 6 (𝑥 ∈ ℝ+ ↦ (1 / (√‘𝑥))) ⇝𝑟 0
5958a1i 11 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ (1 / (√‘𝑥))) ⇝𝑟 0)
60 fveq2 6672 . . . . . 6 (𝑥 = 𝐴 → (√‘𝑥) = (√‘𝐴))
6160oveq2d 7174 . . . . 5 (𝑥 = 𝐴 → (1 / (√‘𝑥)) = (1 / (√‘𝐴)))
622, 3, 4, 5, 9, 5, 15, 16, 18, 42, 44, 56, 57, 59, 61dvfsumrlim3 24632 . . . 4 (⊤ → (𝐹:ℝ+⟶ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ((𝐹𝑟 𝐿𝐴 ∈ ℝ+ ∧ 0 ≤ 𝐴) → (abs‘((𝐹𝐴) − 𝐿)) ≤ (1 / (√‘𝐴)))))
6362simp1d 1138 . . 3 (⊤ → 𝐹:ℝ+⟶ℝ)
6463mptru 1544 . 2 𝐹:ℝ+⟶ℝ
6562simp2d 1139 . . 3 (⊤ → 𝐹 ∈ dom ⇝𝑟 )
6665mptru 1544 . 2 𝐹 ∈ dom ⇝𝑟
67 rpge0 12405 . . . 4 (𝐴 ∈ ℝ+ → 0 ≤ 𝐴)
6867adantl 484 . . 3 ((𝐹𝑟 𝐿𝐴 ∈ ℝ+) → 0 ≤ 𝐴)
6962simp3d 1140 . . . 4 (⊤ → ((𝐹𝑟 𝐿𝐴 ∈ ℝ+ ∧ 0 ≤ 𝐴) → (abs‘((𝐹𝐴) − 𝐿)) ≤ (1 / (√‘𝐴))))
7069mptru 1544 . . 3 ((𝐹𝑟 𝐿𝐴 ∈ ℝ+ ∧ 0 ≤ 𝐴) → (abs‘((𝐹𝐴) − 𝐿)) ≤ (1 / (√‘𝐴)))
7168, 70mpd3an3 1458 . 2 ((𝐹𝑟 𝐿𝐴 ∈ ℝ+) → (abs‘((𝐹𝐴) − 𝐿)) ≤ (1 / (√‘𝐴)))
7264, 66, 713pm3.2i 1335 1 (𝐹:ℝ+⟶ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ((𝐹𝑟 𝐿𝐴 ∈ ℝ+) → (abs‘((𝐹𝐴) − 𝐿)) ≤ (1 / (√‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wtru 1538  wcel 2114  wne 3018  {cpr 4571   class class class wbr 5068  cmpt 5148  dom cdm 5557  wf 6353  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544  +∞cpnf 10674  cle 10678  cmin 10872   / cdiv 11299  cn 11640  2c2 11695  +crp 12392  (,)cioo 12741  ...cfz 12895  cfl 13163  csqrt 14594  abscabs 14595  𝑟 crli 14844  Σcsu 15044   D cdv 24463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-ef 15423  df-sin 15425  df-cos 15426  df-pi 15428  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-cmp 21997  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-limc 24466  df-dv 24467  df-log 25142  df-cxp 25143
This theorem is referenced by:  divsqrsumf  25560  divsqrsum  25561  divsqrtsum2  25562
  Copyright terms: Public domain W3C validator