Proof of Theorem divsqrtsumlem
Step | Hyp | Ref
| Expression |
1 | | ioorp 13086 |
. . . . . 6
⊢
(0(,)+∞) = ℝ+ |
2 | 1 | eqcomi 2747 |
. . . . 5
⊢
ℝ+ = (0(,)+∞) |
3 | | nnuz 12550 |
. . . . 5
⊢ ℕ =
(ℤ≥‘1) |
4 | | 1zzd 12281 |
. . . . 5
⊢ (⊤
→ 1 ∈ ℤ) |
5 | | 0red 10909 |
. . . . 5
⊢ (⊤
→ 0 ∈ ℝ) |
6 | | 1re 10906 |
. . . . . . 7
⊢ 1 ∈
ℝ |
7 | | 0nn0 12178 |
. . . . . . 7
⊢ 0 ∈
ℕ0 |
8 | 6, 7 | nn0addge2i 12212 |
. . . . . 6
⊢ 1 ≤ (0
+ 1) |
9 | 8 | a1i 11 |
. . . . 5
⊢ (⊤
→ 1 ≤ (0 + 1)) |
10 | | 2re 11977 |
. . . . . 6
⊢ 2 ∈
ℝ |
11 | | rpsqrtcl 14904 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ+
→ (√‘𝑥)
∈ ℝ+) |
12 | 11 | adantl 481 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → (√‘𝑥) ∈
ℝ+) |
13 | 12 | rpred 12701 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → (√‘𝑥) ∈ ℝ) |
14 | | remulcl 10887 |
. . . . . 6
⊢ ((2
∈ ℝ ∧ (√‘𝑥) ∈ ℝ) → (2 ·
(√‘𝑥)) ∈
ℝ) |
15 | 10, 13, 14 | sylancr 586 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → (2 · (√‘𝑥)) ∈
ℝ) |
16 | 12 | rprecred 12712 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → (1 / (√‘𝑥)) ∈ ℝ) |
17 | | nnrp 12670 |
. . . . . 6
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℝ+) |
18 | 17, 16 | sylan2 592 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ ℕ) → (1 / (√‘𝑥)) ∈ ℝ) |
19 | | reelprrecn 10894 |
. . . . . . . 8
⊢ ℝ
∈ {ℝ, ℂ} |
20 | 19 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ ℝ ∈ {ℝ, ℂ}) |
21 | 12 | rpcnd 12703 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → (√‘𝑥) ∈ ℂ) |
22 | | 2rp 12664 |
. . . . . . . . 9
⊢ 2 ∈
ℝ+ |
23 | | rpmulcl 12682 |
. . . . . . . . 9
⊢ ((2
∈ ℝ+ ∧ (√‘𝑥) ∈ ℝ+) → (2
· (√‘𝑥))
∈ ℝ+) |
24 | 22, 12, 23 | sylancr 586 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → (2 · (√‘𝑥)) ∈
ℝ+) |
25 | 24 | rpreccld 12711 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → (1 / (2 · (√‘𝑥))) ∈
ℝ+) |
26 | | dvsqrt 25800 |
. . . . . . . 8
⊢ (ℝ
D (𝑥 ∈
ℝ+ ↦ (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / (2
· (√‘𝑥)))) |
27 | 26 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ (ℝ D (𝑥 ∈
ℝ+ ↦ (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / (2
· (√‘𝑥))))) |
28 | | 2cnd 11981 |
. . . . . . 7
⊢ (⊤
→ 2 ∈ ℂ) |
29 | 20, 21, 25, 27, 28 | dvmptcmul 25033 |
. . . . . 6
⊢ (⊤
→ (ℝ D (𝑥 ∈
ℝ+ ↦ (2 · (√‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (2
· (1 / (2 · (√‘𝑥)))))) |
30 | | 2cnd 11981 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → 2 ∈ ℂ) |
31 | | 1cnd 10901 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → 1 ∈ ℂ) |
32 | 24 | rpcnne0d 12710 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → ((2 · (√‘𝑥)) ∈ ℂ ∧ (2
· (√‘𝑥))
≠ 0)) |
33 | | divass 11581 |
. . . . . . . . 9
⊢ ((2
∈ ℂ ∧ 1 ∈ ℂ ∧ ((2 · (√‘𝑥)) ∈ ℂ ∧ (2
· (√‘𝑥))
≠ 0)) → ((2 · 1) / (2 · (√‘𝑥))) = (2 · (1 / (2 ·
(√‘𝑥))))) |
34 | 30, 31, 32, 33 | syl3anc 1369 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → ((2 · 1) / (2 ·
(√‘𝑥))) = (2
· (1 / (2 · (√‘𝑥))))) |
35 | 12 | rpcnne0d 12710 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0)) |
36 | | rpcnne0 12677 |
. . . . . . . . . 10
⊢ (2 ∈
ℝ+ → (2 ∈ ℂ ∧ 2 ≠ 0)) |
37 | 22, 36 | mp1i 13 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → (2 ∈ ℂ ∧ 2 ≠
0)) |
38 | | divcan5 11607 |
. . . . . . . . 9
⊢ ((1
∈ ℂ ∧ ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0) ∧ (2 ∈
ℂ ∧ 2 ≠ 0)) → ((2 · 1) / (2 ·
(√‘𝑥))) = (1 /
(√‘𝑥))) |
39 | 31, 35, 37, 38 | syl3anc 1369 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → ((2 · 1) / (2 ·
(√‘𝑥))) = (1 /
(√‘𝑥))) |
40 | 34, 39 | eqtr3d 2780 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → (2 · (1 / (2 ·
(√‘𝑥)))) = (1 /
(√‘𝑥))) |
41 | 40 | mpteq2dva 5170 |
. . . . . 6
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ (2 · (1 / (2 · (√‘𝑥))))) = (𝑥 ∈ ℝ+ ↦ (1 /
(√‘𝑥)))) |
42 | 29, 41 | eqtrd 2778 |
. . . . 5
⊢ (⊤
→ (ℝ D (𝑥 ∈
ℝ+ ↦ (2 · (√‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (1 /
(√‘𝑥)))) |
43 | | fveq2 6756 |
. . . . . 6
⊢ (𝑥 = 𝑛 → (√‘𝑥) = (√‘𝑛)) |
44 | 43 | oveq2d 7271 |
. . . . 5
⊢ (𝑥 = 𝑛 → (1 / (√‘𝑥)) = (1 / (√‘𝑛))) |
45 | | simp3r 1200 |
. . . . . . 7
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 𝑛 ∈ ℝ+) ∧ (0 ≤
𝑥 ∧ 𝑥 ≤ 𝑛)) → 𝑥 ≤ 𝑛) |
46 | | simp2l 1197 |
. . . . . . . . 9
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 𝑛 ∈ ℝ+) ∧ (0 ≤
𝑥 ∧ 𝑥 ≤ 𝑛)) → 𝑥 ∈ ℝ+) |
47 | 46 | rprege0d 12708 |
. . . . . . . 8
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 𝑛 ∈ ℝ+) ∧ (0 ≤
𝑥 ∧ 𝑥 ≤ 𝑛)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) |
48 | | simp2r 1198 |
. . . . . . . . 9
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 𝑛 ∈ ℝ+) ∧ (0 ≤
𝑥 ∧ 𝑥 ≤ 𝑛)) → 𝑛 ∈ ℝ+) |
49 | 48 | rprege0d 12708 |
. . . . . . . 8
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 𝑛 ∈ ℝ+) ∧ (0 ≤
𝑥 ∧ 𝑥 ≤ 𝑛)) → (𝑛 ∈ ℝ ∧ 0 ≤ 𝑛)) |
50 | | sqrtle 14900 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℝ ∧ 0 ≤
𝑥) ∧ (𝑛 ∈ ℝ ∧ 0 ≤
𝑛)) → (𝑥 ≤ 𝑛 ↔ (√‘𝑥) ≤ (√‘𝑛))) |
51 | 47, 49, 50 | syl2anc 583 |
. . . . . . 7
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 𝑛 ∈ ℝ+) ∧ (0 ≤
𝑥 ∧ 𝑥 ≤ 𝑛)) → (𝑥 ≤ 𝑛 ↔ (√‘𝑥) ≤ (√‘𝑛))) |
52 | 45, 51 | mpbid 231 |
. . . . . 6
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 𝑛 ∈ ℝ+) ∧ (0 ≤
𝑥 ∧ 𝑥 ≤ 𝑛)) → (√‘𝑥) ≤ (√‘𝑛)) |
53 | 46 | rpsqrtcld 15051 |
. . . . . . 7
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 𝑛 ∈ ℝ+) ∧ (0 ≤
𝑥 ∧ 𝑥 ≤ 𝑛)) → (√‘𝑥) ∈
ℝ+) |
54 | 48 | rpsqrtcld 15051 |
. . . . . . 7
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 𝑛 ∈ ℝ+) ∧ (0 ≤
𝑥 ∧ 𝑥 ≤ 𝑛)) → (√‘𝑛) ∈
ℝ+) |
55 | 53, 54 | lerecd 12720 |
. . . . . 6
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 𝑛 ∈ ℝ+) ∧ (0 ≤
𝑥 ∧ 𝑥 ≤ 𝑛)) → ((√‘𝑥) ≤ (√‘𝑛) ↔ (1 / (√‘𝑛)) ≤ (1 /
(√‘𝑥)))) |
56 | 52, 55 | mpbid 231 |
. . . . 5
⊢
((⊤ ∧ (𝑥
∈ ℝ+ ∧ 𝑛 ∈ ℝ+) ∧ (0 ≤
𝑥 ∧ 𝑥 ≤ 𝑛)) → (1 / (√‘𝑛)) ≤ (1 /
(√‘𝑥))) |
57 | | divsqrtsum.2 |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑥))(1 /
(√‘𝑛)) −
(2 · (√‘𝑥)))) |
58 | | sqrtlim 26027 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
↦ (1 / (√‘𝑥))) ⇝𝑟
0 |
59 | 58 | a1i 11 |
. . . . 5
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ (1 / (√‘𝑥))) ⇝𝑟
0) |
60 | | fveq2 6756 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (√‘𝑥) = (√‘𝐴)) |
61 | 60 | oveq2d 7271 |
. . . . 5
⊢ (𝑥 = 𝐴 → (1 / (√‘𝑥)) = (1 / (√‘𝐴))) |
62 | 2, 3, 4, 5, 9, 5, 15, 16, 18, 42, 44, 56, 57, 59, 61 | dvfsumrlim3 25102 |
. . . 4
⊢ (⊤
→ (𝐹:ℝ+⟶ℝ ∧
𝐹 ∈ dom
⇝𝑟 ∧ ((𝐹 ⇝𝑟 𝐿 ∧ 𝐴 ∈ ℝ+ ∧ 0 ≤
𝐴) →
(abs‘((𝐹‘𝐴) − 𝐿)) ≤ (1 / (√‘𝐴))))) |
63 | 62 | simp1d 1140 |
. . 3
⊢ (⊤
→ 𝐹:ℝ+⟶ℝ) |
64 | 63 | mptru 1546 |
. 2
⊢ 𝐹:ℝ+⟶ℝ |
65 | 62 | simp2d 1141 |
. . 3
⊢ (⊤
→ 𝐹 ∈ dom
⇝𝑟 ) |
66 | 65 | mptru 1546 |
. 2
⊢ 𝐹 ∈ dom
⇝𝑟 |
67 | | rpge0 12672 |
. . . 4
⊢ (𝐴 ∈ ℝ+
→ 0 ≤ 𝐴) |
68 | 67 | adantl 481 |
. . 3
⊢ ((𝐹 ⇝𝑟
𝐿 ∧ 𝐴 ∈ ℝ+) → 0 ≤
𝐴) |
69 | 62 | simp3d 1142 |
. . . 4
⊢ (⊤
→ ((𝐹
⇝𝑟 𝐿 ∧ 𝐴 ∈ ℝ+ ∧ 0 ≤
𝐴) →
(abs‘((𝐹‘𝐴) − 𝐿)) ≤ (1 / (√‘𝐴)))) |
70 | 69 | mptru 1546 |
. . 3
⊢ ((𝐹 ⇝𝑟
𝐿 ∧ 𝐴 ∈ ℝ+ ∧ 0 ≤
𝐴) →
(abs‘((𝐹‘𝐴) − 𝐿)) ≤ (1 / (√‘𝐴))) |
71 | 68, 70 | mpd3an3 1460 |
. 2
⊢ ((𝐹 ⇝𝑟
𝐿 ∧ 𝐴 ∈ ℝ+) →
(abs‘((𝐹‘𝐴) − 𝐿)) ≤ (1 / (√‘𝐴))) |
72 | 64, 66, 71 | 3pm3.2i 1337 |
1
⊢ (𝐹:ℝ+⟶ℝ ∧
𝐹 ∈ dom
⇝𝑟 ∧ ((𝐹 ⇝𝑟 𝐿 ∧ 𝐴 ∈ ℝ+) →
(abs‘((𝐹‘𝐴) − 𝐿)) ≤ (1 / (√‘𝐴)))) |