MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divsqrtsumlem Structured version   Visualization version   GIF version

Theorem divsqrtsumlem 26918
Description: Lemma for divsqrsum 26920 and divsqrtsum2 26921. (Contributed by Mario Carneiro, 18-May-2016.)
Hypothesis
Ref Expression
divsqrtsum.2 𝐹 = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑛)) − (2 · (√‘𝑥))))
Assertion
Ref Expression
divsqrtsumlem (𝐹:ℝ+⟶ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ((𝐹𝑟 𝐿𝐴 ∈ ℝ+) → (abs‘((𝐹𝐴) − 𝐿)) ≤ (1 / (√‘𝐴))))
Distinct variable group:   𝑥,𝑛,𝐴
Allowed substitution hints:   𝐹(𝑥,𝑛)   𝐿(𝑥,𝑛)

Proof of Theorem divsqrtsumlem
StepHypRef Expression
1 ioorp 13325 . . . . . 6 (0(,)+∞) = ℝ+
21eqcomi 2740 . . . . 5 + = (0(,)+∞)
3 nnuz 12775 . . . . 5 ℕ = (ℤ‘1)
4 1zzd 12503 . . . . 5 (⊤ → 1 ∈ ℤ)
5 0red 11115 . . . . 5 (⊤ → 0 ∈ ℝ)
6 1re 11112 . . . . . . 7 1 ∈ ℝ
7 0nn0 12396 . . . . . . 7 0 ∈ ℕ0
86, 7nn0addge2i 12430 . . . . . 6 1 ≤ (0 + 1)
98a1i 11 . . . . 5 (⊤ → 1 ≤ (0 + 1))
10 2re 12199 . . . . . 6 2 ∈ ℝ
11 rpsqrtcl 15171 . . . . . . . 8 (𝑥 ∈ ℝ+ → (√‘𝑥) ∈ ℝ+)
1211adantl 481 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ+)
1312rpred 12934 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℝ)
14 remulcl 11091 . . . . . 6 ((2 ∈ ℝ ∧ (√‘𝑥) ∈ ℝ) → (2 · (√‘𝑥)) ∈ ℝ)
1510, 13, 14sylancr 587 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (2 · (√‘𝑥)) ∈ ℝ)
1612rprecred 12945 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / (√‘𝑥)) ∈ ℝ)
17 nnrp 12902 . . . . . 6 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ+)
1817, 16sylan2 593 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℕ) → (1 / (√‘𝑥)) ∈ ℝ)
19 reelprrecn 11098 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
2019a1i 11 . . . . . . 7 (⊤ → ℝ ∈ {ℝ, ℂ})
2112rpcnd 12936 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (√‘𝑥) ∈ ℂ)
22 2rp 12895 . . . . . . . . 9 2 ∈ ℝ+
23 rpmulcl 12915 . . . . . . . . 9 ((2 ∈ ℝ+ ∧ (√‘𝑥) ∈ ℝ+) → (2 · (√‘𝑥)) ∈ ℝ+)
2422, 12, 23sylancr 587 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → (2 · (√‘𝑥)) ∈ ℝ+)
2524rpreccld 12944 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / (2 · (√‘𝑥))) ∈ ℝ+)
26 dvsqrt 26679 . . . . . . . 8 (ℝ D (𝑥 ∈ ℝ+ ↦ (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / (2 · (√‘𝑥))))
2726a1i 11 . . . . . . 7 (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (√‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / (2 · (√‘𝑥)))))
28 2cnd 12203 . . . . . . 7 (⊤ → 2 ∈ ℂ)
2920, 21, 25, 27, 28dvmptcmul 25896 . . . . . 6 (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (2 · (√‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (2 · (1 / (2 · (√‘𝑥))))))
30 2cnd 12203 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → 2 ∈ ℂ)
31 1cnd 11107 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℂ)
3224rpcnne0d 12943 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((2 · (√‘𝑥)) ∈ ℂ ∧ (2 · (√‘𝑥)) ≠ 0))
33 divass 11794 . . . . . . . . 9 ((2 ∈ ℂ ∧ 1 ∈ ℂ ∧ ((2 · (√‘𝑥)) ∈ ℂ ∧ (2 · (√‘𝑥)) ≠ 0)) → ((2 · 1) / (2 · (√‘𝑥))) = (2 · (1 / (2 · (√‘𝑥)))))
3430, 31, 32, 33syl3anc 1373 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((2 · 1) / (2 · (√‘𝑥))) = (2 · (1 / (2 · (√‘𝑥)))))
3512rpcnne0d 12943 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0))
36 rpcnne0 12909 . . . . . . . . . 10 (2 ∈ ℝ+ → (2 ∈ ℂ ∧ 2 ≠ 0))
3722, 36mp1i 13 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → (2 ∈ ℂ ∧ 2 ≠ 0))
38 divcan5 11823 . . . . . . . . 9 ((1 ∈ ℂ ∧ ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((2 · 1) / (2 · (√‘𝑥))) = (1 / (√‘𝑥)))
3931, 35, 37, 38syl3anc 1373 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((2 · 1) / (2 · (√‘𝑥))) = (1 / (√‘𝑥)))
4034, 39eqtr3d 2768 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (2 · (1 / (2 · (√‘𝑥)))) = (1 / (√‘𝑥)))
4140mpteq2dva 5184 . . . . . 6 (⊤ → (𝑥 ∈ ℝ+ ↦ (2 · (1 / (2 · (√‘𝑥))))) = (𝑥 ∈ ℝ+ ↦ (1 / (√‘𝑥))))
4229, 41eqtrd 2766 . . . . 5 (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (2 · (√‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (1 / (√‘𝑥))))
43 fveq2 6822 . . . . . 6 (𝑥 = 𝑛 → (√‘𝑥) = (√‘𝑛))
4443oveq2d 7362 . . . . 5 (𝑥 = 𝑛 → (1 / (√‘𝑥)) = (1 / (√‘𝑛)))
45 simp3r 1203 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → 𝑥𝑛)
46 simp2l 1200 . . . . . . . . 9 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → 𝑥 ∈ ℝ+)
4746rprege0d 12941 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
48 simp2r 1201 . . . . . . . . 9 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → 𝑛 ∈ ℝ+)
4948rprege0d 12941 . . . . . . . 8 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → (𝑛 ∈ ℝ ∧ 0 ≤ 𝑛))
50 sqrtle 15167 . . . . . . . 8 (((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) ∧ (𝑛 ∈ ℝ ∧ 0 ≤ 𝑛)) → (𝑥𝑛 ↔ (√‘𝑥) ≤ (√‘𝑛)))
5147, 49, 50syl2anc 584 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → (𝑥𝑛 ↔ (√‘𝑥) ≤ (√‘𝑛)))
5245, 51mpbid 232 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → (√‘𝑥) ≤ (√‘𝑛))
5346rpsqrtcld 15319 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → (√‘𝑥) ∈ ℝ+)
5448rpsqrtcld 15319 . . . . . . 7 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → (√‘𝑛) ∈ ℝ+)
5553, 54lerecd 12953 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → ((√‘𝑥) ≤ (√‘𝑛) ↔ (1 / (√‘𝑛)) ≤ (1 / (√‘𝑥))))
5652, 55mpbid 232 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (0 ≤ 𝑥𝑥𝑛)) → (1 / (√‘𝑛)) ≤ (1 / (√‘𝑥)))
57 divsqrtsum.2 . . . . 5 𝐹 = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(1 / (√‘𝑛)) − (2 · (√‘𝑥))))
58 sqrtlim 26911 . . . . . 6 (𝑥 ∈ ℝ+ ↦ (1 / (√‘𝑥))) ⇝𝑟 0
5958a1i 11 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ (1 / (√‘𝑥))) ⇝𝑟 0)
60 fveq2 6822 . . . . . 6 (𝑥 = 𝐴 → (√‘𝑥) = (√‘𝐴))
6160oveq2d 7362 . . . . 5 (𝑥 = 𝐴 → (1 / (√‘𝑥)) = (1 / (√‘𝐴)))
622, 3, 4, 5, 9, 5, 15, 16, 18, 42, 44, 56, 57, 59, 61dvfsumrlim3 25968 . . . 4 (⊤ → (𝐹:ℝ+⟶ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ((𝐹𝑟 𝐿𝐴 ∈ ℝ+ ∧ 0 ≤ 𝐴) → (abs‘((𝐹𝐴) − 𝐿)) ≤ (1 / (√‘𝐴)))))
6362simp1d 1142 . . 3 (⊤ → 𝐹:ℝ+⟶ℝ)
6463mptru 1548 . 2 𝐹:ℝ+⟶ℝ
6562simp2d 1143 . . 3 (⊤ → 𝐹 ∈ dom ⇝𝑟 )
6665mptru 1548 . 2 𝐹 ∈ dom ⇝𝑟
67 rpge0 12904 . . . 4 (𝐴 ∈ ℝ+ → 0 ≤ 𝐴)
6867adantl 481 . . 3 ((𝐹𝑟 𝐿𝐴 ∈ ℝ+) → 0 ≤ 𝐴)
6962simp3d 1144 . . . 4 (⊤ → ((𝐹𝑟 𝐿𝐴 ∈ ℝ+ ∧ 0 ≤ 𝐴) → (abs‘((𝐹𝐴) − 𝐿)) ≤ (1 / (√‘𝐴))))
7069mptru 1548 . . 3 ((𝐹𝑟 𝐿𝐴 ∈ ℝ+ ∧ 0 ≤ 𝐴) → (abs‘((𝐹𝐴) − 𝐿)) ≤ (1 / (√‘𝐴)))
7168, 70mpd3an3 1464 . 2 ((𝐹𝑟 𝐿𝐴 ∈ ℝ+) → (abs‘((𝐹𝐴) − 𝐿)) ≤ (1 / (√‘𝐴)))
7264, 66, 713pm3.2i 1340 1 (𝐹:ℝ+⟶ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ((𝐹𝑟 𝐿𝐴 ∈ ℝ+) → (abs‘((𝐹𝐴) − 𝐿)) ≤ (1 / (√‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wtru 1542  wcel 2111  wne 2928  {cpr 4578   class class class wbr 5091  cmpt 5172  dom cdm 5616  wf 6477  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011  +∞cpnf 11143  cle 11147  cmin 11344   / cdiv 11774  cn 12125  2c2 12180  +crp 12890  (,)cioo 13245  ...cfz 13407  cfl 13694  csqrt 15140  abscabs 15141  𝑟 crli 15392  Σcsu 15593   D cdv 25792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19230  df-cmn 19695  df-psmet 21284  df-xmet 21285  df-met 21286  df-bl 21287  df-mopn 21288  df-fbas 21289  df-fg 21290  df-cnfld 21293  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-nei 23014  df-lp 23052  df-perf 23053  df-cn 23143  df-cnp 23144  df-haus 23231  df-cmp 23303  df-tx 23478  df-hmeo 23671  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-xms 24236  df-ms 24237  df-tms 24238  df-cncf 24799  df-limc 25795  df-dv 25796  df-log 26493  df-cxp 26494
This theorem is referenced by:  divsqrsumf  26919  divsqrsum  26920  divsqrtsum2  26921
  Copyright terms: Public domain W3C validator