MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  advlog Structured version   Visualization version   GIF version

Theorem advlog 26492
Description: The antiderivative of the logarithm. (Contributed by Mario Carneiro, 21-May-2016.)
Assertion
Ref Expression
advlog (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))

Proof of Theorem advlog
StepHypRef Expression
1 reelprrecn 11197 . . . . 5 ℝ ∈ {ℝ, ℂ}
21a1i 11 . . . 4 (⊤ → ℝ ∈ {ℝ, ℂ})
3 rpre 12978 . . . . . 6 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
43adantl 481 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
54recnd 11238 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
6 1cnd 11205 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℂ)
7 recn 11195 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
87adantl 481 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
9 1red 11211 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ) → 1 ∈ ℝ)
102dvmptid 25799 . . . . 5 (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1))
11 rpssre 12977 . . . . . 6 + ⊆ ℝ
1211a1i 11 . . . . 5 (⊤ → ℝ+ ⊆ ℝ)
13 eqid 2724 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1413tgioo2 24629 . . . . 5 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
15 ioorp 13398 . . . . . . 7 (0(,)+∞) = ℝ+
16 iooretop 24592 . . . . . . 7 (0(,)+∞) ∈ (topGen‘ran (,))
1715, 16eqeltrri 2822 . . . . . 6 + ∈ (topGen‘ran (,))
1817a1i 11 . . . . 5 (⊤ → ℝ+ ∈ (topGen‘ran (,)))
192, 8, 9, 10, 12, 14, 13, 18dvmptres 25805 . . . 4 (⊤ → (ℝ D (𝑥 ∈ ℝ+𝑥)) = (𝑥 ∈ ℝ+ ↦ 1))
20 relogcl 26414 . . . . . . 7 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
2120adantl 481 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
22 peano2rem 11523 . . . . . 6 ((log‘𝑥) ∈ ℝ → ((log‘𝑥) − 1) ∈ ℝ)
2321, 22syl 17 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) − 1) ∈ ℝ)
2423recnd 11238 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) − 1) ∈ ℂ)
25 rpreccl 12996 . . . . . 6 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+)
2625adantl 481 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+)
2726rpcnd 13014 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℂ)
2821recnd 11238 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
29 relogf1o 26405 . . . . . . . . . . 11 (log ↾ ℝ+):ℝ+1-1-onto→ℝ
30 f1of 6823 . . . . . . . . . . 11 ((log ↾ ℝ+):ℝ+1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ)
3129, 30mp1i 13 . . . . . . . . . 10 (⊤ → (log ↾ ℝ+):ℝ+⟶ℝ)
3231feqmptd 6950 . . . . . . . . 9 (⊤ → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)))
33 fvres 6900 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → ((log ↾ ℝ+)‘𝑥) = (log‘𝑥))
3433mpteq2ia 5241 . . . . . . . . 9 (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))
3532, 34eqtrdi 2780 . . . . . . . 8 (⊤ → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
3635oveq2d 7417 . . . . . . 7 (⊤ → (ℝ D (log ↾ ℝ+)) = (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))))
37 dvrelog 26475 . . . . . . 7 (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))
3836, 37eqtr3di 2779 . . . . . 6 (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
39 0cnd 11203 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → 0 ∈ ℂ)
40 1cnd 11205 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ) → 1 ∈ ℂ)
41 0cnd 11203 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ) → 0 ∈ ℂ)
42 1cnd 11205 . . . . . . . 8 (⊤ → 1 ∈ ℂ)
432, 42dvmptc 25800 . . . . . . 7 (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ 1)) = (𝑥 ∈ ℝ ↦ 0))
442, 40, 41, 43, 12, 14, 13, 18dvmptres 25805 . . . . . 6 (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ 1)) = (𝑥 ∈ ℝ+ ↦ 0))
452, 28, 27, 38, 6, 39, 44dvmptsub 25809 . . . . 5 (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − 1))) = (𝑥 ∈ ℝ+ ↦ ((1 / 𝑥) − 0)))
4627subid1d 11556 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((1 / 𝑥) − 0) = (1 / 𝑥))
4746mpteq2dva 5238 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ ((1 / 𝑥) − 0)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
4845, 47eqtrd 2764 . . . 4 (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − 1))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
492, 5, 6, 19, 24, 27, 48dvmptmul 25803 . . 3 (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ ((1 · ((log‘𝑥) − 1)) + ((1 / 𝑥) · 𝑥))))
5024mullidd 11228 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 · ((log‘𝑥) − 1)) = ((log‘𝑥) − 1))
51 rpne0 12986 . . . . . . . 8 (𝑥 ∈ ℝ+𝑥 ≠ 0)
5251adantl 481 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
535, 52recid2d 11982 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((1 / 𝑥) · 𝑥) = 1)
5450, 53oveq12d 7419 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((1 · ((log‘𝑥) − 1)) + ((1 / 𝑥) · 𝑥)) = (((log‘𝑥) − 1) + 1))
55 ax-1cn 11163 . . . . . 6 1 ∈ ℂ
56 npcan 11465 . . . . . 6 (((log‘𝑥) ∈ ℂ ∧ 1 ∈ ℂ) → (((log‘𝑥) − 1) + 1) = (log‘𝑥))
5728, 55, 56sylancl 585 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (((log‘𝑥) − 1) + 1) = (log‘𝑥))
5854, 57eqtrd 2764 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((1 · ((log‘𝑥) − 1)) + ((1 / 𝑥) · 𝑥)) = (log‘𝑥))
5958mpteq2dva 5238 . . 3 (⊤ → (𝑥 ∈ ℝ+ ↦ ((1 · ((log‘𝑥) − 1)) + ((1 / 𝑥) · 𝑥))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
6049, 59eqtrd 2764 . 2 (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
6160mptru 1540 1 (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1533  wtru 1534  wcel 2098  wne 2932  wss 3940  {cpr 4622  cmpt 5221  ran crn 5667  cres 5668  wf 6529  1-1-ontowf1o 6532  cfv 6533  (class class class)co 7401  cc 11103  cr 11104  0cc0 11105  1c1 11106   + caddc 11108   · cmul 11110  +∞cpnf 11241  cmin 11440   / cdiv 11867  +crp 12970  (,)cioo 13320  TopOpenctopn 17363  topGenctg 17379  fldccnfld 21223   D cdv 25702  logclog 26393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9631  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-pre-sup 11183  ax-addf 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-om 7849  df-1st 7968  df-2nd 7969  df-supp 8141  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-er 8698  df-map 8817  df-pm 8818  df-ixp 8887  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-fsupp 9357  df-fi 9401  df-sup 9432  df-inf 9433  df-oi 9500  df-card 9929  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ioo 13324  df-ioc 13325  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-fac 14230  df-bc 14259  df-hash 14287  df-shft 15010  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-limsup 15411  df-clim 15428  df-rlim 15429  df-sum 15629  df-ef 16007  df-sin 16009  df-cos 16010  df-pi 16012  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-hom 17217  df-cco 17218  df-rest 17364  df-topn 17365  df-0g 17383  df-gsum 17384  df-topgen 17385  df-pt 17386  df-prds 17389  df-xrs 17444  df-qtop 17449  df-imas 17450  df-xps 17452  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18560  df-sgrp 18639  df-mnd 18655  df-submnd 18701  df-mulg 18983  df-cntz 19218  df-cmn 19687  df-psmet 21215  df-xmet 21216  df-met 21217  df-bl 21218  df-mopn 21219  df-fbas 21220  df-fg 21221  df-cnfld 21224  df-top 22706  df-topon 22723  df-topsp 22745  df-bases 22759  df-cld 22833  df-ntr 22834  df-cls 22835  df-nei 22912  df-lp 22950  df-perf 22951  df-cn 23041  df-cnp 23042  df-haus 23129  df-cmp 23201  df-tx 23376  df-hmeo 23569  df-fil 23660  df-fm 23752  df-flim 23753  df-flf 23754  df-xms 24136  df-ms 24137  df-tms 24138  df-cncf 24708  df-limc 25705  df-dv 25706  df-log 26395
This theorem is referenced by:  logfacbnd3  27060
  Copyright terms: Public domain W3C validator