Step | Hyp | Ref
| Expression |
1 | | reelprrecn 11208 |
. . . . 5
β’ β
β {β, β} |
2 | 1 | a1i 11 |
. . . 4
β’ (β€
β β β {β, β}) |
3 | | rpre 12989 |
. . . . . 6
β’ (π₯ β β+
β π₯ β
β) |
4 | 3 | adantl 481 |
. . . . 5
β’
((β€ β§ π₯
β β+) β π₯ β β) |
5 | 4 | recnd 11249 |
. . . 4
β’
((β€ β§ π₯
β β+) β π₯ β β) |
6 | | 1cnd 11216 |
. . . 4
β’
((β€ β§ π₯
β β+) β 1 β β) |
7 | | recn 11206 |
. . . . . 6
β’ (π₯ β β β π₯ β
β) |
8 | 7 | adantl 481 |
. . . . 5
β’
((β€ β§ π₯
β β) β π₯
β β) |
9 | | 1red 11222 |
. . . . 5
β’
((β€ β§ π₯
β β) β 1 β β) |
10 | 2 | dvmptid 25809 |
. . . . 5
β’ (β€
β (β D (π₯ β
β β¦ π₯)) =
(π₯ β β β¦
1)) |
11 | | rpssre 12988 |
. . . . . 6
β’
β+ β β |
12 | 11 | a1i 11 |
. . . . 5
β’ (β€
β β+ β β) |
13 | | eqid 2731 |
. . . . . 6
β’
(TopOpenββfld) =
(TopOpenββfld) |
14 | 13 | tgioo2 24639 |
. . . . 5
β’
(topGenβran (,)) = ((TopOpenββfld)
βΎt β) |
15 | | ioorp 13409 |
. . . . . . 7
β’
(0(,)+β) = β+ |
16 | | iooretop 24602 |
. . . . . . 7
β’
(0(,)+β) β (topGenβran (,)) |
17 | 15, 16 | eqeltrri 2829 |
. . . . . 6
β’
β+ β (topGenβran (,)) |
18 | 17 | a1i 11 |
. . . . 5
β’ (β€
β β+ β (topGenβran (,))) |
19 | 2, 8, 9, 10, 12, 14, 13, 18 | dvmptres 25815 |
. . . 4
β’ (β€
β (β D (π₯ β
β+ β¦ π₯)) = (π₯ β β+ β¦
1)) |
20 | | relogcl 26424 |
. . . . . . 7
β’ (π₯ β β+
β (logβπ₯) β
β) |
21 | 20 | adantl 481 |
. . . . . 6
β’
((β€ β§ π₯
β β+) β (logβπ₯) β β) |
22 | | peano2rem 11534 |
. . . . . 6
β’
((logβπ₯)
β β β ((logβπ₯) β 1) β β) |
23 | 21, 22 | syl 17 |
. . . . 5
β’
((β€ β§ π₯
β β+) β ((logβπ₯) β 1) β β) |
24 | 23 | recnd 11249 |
. . . 4
β’
((β€ β§ π₯
β β+) β ((logβπ₯) β 1) β β) |
25 | | rpreccl 13007 |
. . . . . 6
β’ (π₯ β β+
β (1 / π₯) β
β+) |
26 | 25 | adantl 481 |
. . . . 5
β’
((β€ β§ π₯
β β+) β (1 / π₯) β
β+) |
27 | 26 | rpcnd 13025 |
. . . 4
β’
((β€ β§ π₯
β β+) β (1 / π₯) β β) |
28 | 21 | recnd 11249 |
. . . . . 6
β’
((β€ β§ π₯
β β+) β (logβπ₯) β β) |
29 | | relogf1o 26415 |
. . . . . . . . . . 11
β’ (log
βΎ β+):β+β1-1-ontoββ |
30 | | f1of 6833 |
. . . . . . . . . . 11
β’ ((log
βΎ β+):β+β1-1-ontoββ β (log βΎ
β+):β+βΆβ) |
31 | 29, 30 | mp1i 13 |
. . . . . . . . . 10
β’ (β€
β (log βΎ
β+):β+βΆβ) |
32 | 31 | feqmptd 6960 |
. . . . . . . . 9
β’ (β€
β (log βΎ β+) = (π₯ β β+ β¦ ((log
βΎ β+)βπ₯))) |
33 | | fvres 6910 |
. . . . . . . . . 10
β’ (π₯ β β+
β ((log βΎ β+)βπ₯) = (logβπ₯)) |
34 | 33 | mpteq2ia 5251 |
. . . . . . . . 9
β’ (π₯ β β+
β¦ ((log βΎ β+)βπ₯)) = (π₯ β β+ β¦
(logβπ₯)) |
35 | 32, 34 | eqtrdi 2787 |
. . . . . . . 8
β’ (β€
β (log βΎ β+) = (π₯ β β+ β¦
(logβπ₯))) |
36 | 35 | oveq2d 7428 |
. . . . . . 7
β’ (β€
β (β D (log βΎ β+)) = (β D (π₯ β β+
β¦ (logβπ₯)))) |
37 | | dvrelog 26485 |
. . . . . . 7
β’ (β
D (log βΎ β+)) = (π₯ β β+ β¦ (1 /
π₯)) |
38 | 36, 37 | eqtr3di 2786 |
. . . . . 6
β’ (β€
β (β D (π₯ β
β+ β¦ (logβπ₯))) = (π₯ β β+ β¦ (1 /
π₯))) |
39 | | 0cnd 11214 |
. . . . . 6
β’
((β€ β§ π₯
β β+) β 0 β β) |
40 | | 1cnd 11216 |
. . . . . . 7
β’
((β€ β§ π₯
β β) β 1 β β) |
41 | | 0cnd 11214 |
. . . . . . 7
β’
((β€ β§ π₯
β β) β 0 β β) |
42 | | 1cnd 11216 |
. . . . . . . 8
β’ (β€
β 1 β β) |
43 | 2, 42 | dvmptc 25810 |
. . . . . . 7
β’ (β€
β (β D (π₯ β
β β¦ 1)) = (π₯
β β β¦ 0)) |
44 | 2, 40, 41, 43, 12, 14, 13, 18 | dvmptres 25815 |
. . . . . 6
β’ (β€
β (β D (π₯ β
β+ β¦ 1)) = (π₯ β β+ β¦
0)) |
45 | 2, 28, 27, 38, 6, 39, 44 | dvmptsub 25819 |
. . . . 5
β’ (β€
β (β D (π₯ β
β+ β¦ ((logβπ₯) β 1))) = (π₯ β β+ β¦ ((1 /
π₯) β
0))) |
46 | 27 | subid1d 11567 |
. . . . . 6
β’
((β€ β§ π₯
β β+) β ((1 / π₯) β 0) = (1 / π₯)) |
47 | 46 | mpteq2dva 5248 |
. . . . 5
β’ (β€
β (π₯ β
β+ β¦ ((1 / π₯) β 0)) = (π₯ β β+ β¦ (1 /
π₯))) |
48 | 45, 47 | eqtrd 2771 |
. . . 4
β’ (β€
β (β D (π₯ β
β+ β¦ ((logβπ₯) β 1))) = (π₯ β β+ β¦ (1 /
π₯))) |
49 | 2, 5, 6, 19, 24, 27, 48 | dvmptmul 25813 |
. . 3
β’ (β€
β (β D (π₯ β
β+ β¦ (π₯ Β· ((logβπ₯) β 1)))) = (π₯ β β+ β¦ ((1
Β· ((logβπ₯)
β 1)) + ((1 / π₯)
Β· π₯)))) |
50 | 24 | mullidd 11239 |
. . . . . 6
β’
((β€ β§ π₯
β β+) β (1 Β· ((logβπ₯) β 1)) = ((logβπ₯) β 1)) |
51 | | rpne0 12997 |
. . . . . . . 8
β’ (π₯ β β+
β π₯ β
0) |
52 | 51 | adantl 481 |
. . . . . . 7
β’
((β€ β§ π₯
β β+) β π₯ β 0) |
53 | 5, 52 | recid2d 11993 |
. . . . . 6
β’
((β€ β§ π₯
β β+) β ((1 / π₯) Β· π₯) = 1) |
54 | 50, 53 | oveq12d 7430 |
. . . . 5
β’
((β€ β§ π₯
β β+) β ((1 Β· ((logβπ₯) β 1)) + ((1 / π₯) Β· π₯)) = (((logβπ₯) β 1) + 1)) |
55 | | ax-1cn 11174 |
. . . . . 6
β’ 1 β
β |
56 | | npcan 11476 |
. . . . . 6
β’
(((logβπ₯)
β β β§ 1 β β) β (((logβπ₯) β 1) + 1) = (logβπ₯)) |
57 | 28, 55, 56 | sylancl 585 |
. . . . 5
β’
((β€ β§ π₯
β β+) β (((logβπ₯) β 1) + 1) = (logβπ₯)) |
58 | 54, 57 | eqtrd 2771 |
. . . 4
β’
((β€ β§ π₯
β β+) β ((1 Β· ((logβπ₯) β 1)) + ((1 / π₯) Β· π₯)) = (logβπ₯)) |
59 | 58 | mpteq2dva 5248 |
. . 3
β’ (β€
β (π₯ β
β+ β¦ ((1 Β· ((logβπ₯) β 1)) + ((1 / π₯) Β· π₯))) = (π₯ β β+ β¦
(logβπ₯))) |
60 | 49, 59 | eqtrd 2771 |
. 2
β’ (β€
β (β D (π₯ β
β+ β¦ (π₯ Β· ((logβπ₯) β 1)))) = (π₯ β β+ β¦
(logβπ₯))) |
61 | 60 | mptru 1547 |
1
β’ (β
D (π₯ β
β+ β¦ (π₯ Β· ((logβπ₯) β 1)))) = (π₯ β β+ β¦
(logβπ₯)) |