Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  advlog Structured version   Visualization version   GIF version

 Description: The antiderivative of the logarithm. (Contributed by Mario Carneiro, 21-May-2016.)
Assertion
Ref Expression
advlog (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))

StepHypRef Expression
1 reelprrecn 10667 . . . . 5 ℝ ∈ {ℝ, ℂ}
21a1i 11 . . . 4 (⊤ → ℝ ∈ {ℝ, ℂ})
3 rpre 12438 . . . . . 6 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
43adantl 485 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
54recnd 10707 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
6 1cnd 10674 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℂ)
7 recn 10665 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
87adantl 485 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
9 1red 10680 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ) → 1 ∈ ℝ)
102dvmptid 24656 . . . . 5 (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1))
11 rpssre 12437 . . . . . 6 + ⊆ ℝ
1211a1i 11 . . . . 5 (⊤ → ℝ+ ⊆ ℝ)
13 eqid 2758 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1413tgioo2 23504 . . . . 5 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
15 ioorp 12857 . . . . . . 7 (0(,)+∞) = ℝ+
16 iooretop 23467 . . . . . . 7 (0(,)+∞) ∈ (topGen‘ran (,))
1715, 16eqeltrri 2849 . . . . . 6 + ∈ (topGen‘ran (,))
1817a1i 11 . . . . 5 (⊤ → ℝ+ ∈ (topGen‘ran (,)))
192, 8, 9, 10, 12, 14, 13, 18dvmptres 24662 . . . 4 (⊤ → (ℝ D (𝑥 ∈ ℝ+𝑥)) = (𝑥 ∈ ℝ+ ↦ 1))
20 relogcl 25266 . . . . . . 7 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
2120adantl 485 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
22 peano2rem 10991 . . . . . 6 ((log‘𝑥) ∈ ℝ → ((log‘𝑥) − 1) ∈ ℝ)
2321, 22syl 17 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) − 1) ∈ ℝ)
2423recnd 10707 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) − 1) ∈ ℂ)
25 rpreccl 12456 . . . . . 6 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+)
2625adantl 485 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+)
2726rpcnd 12474 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℂ)
2821recnd 10707 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
29 dvrelog 25327 . . . . . . 7 (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))
30 relogf1o 25257 . . . . . . . . . . 11 (log ↾ ℝ+):ℝ+1-1-onto→ℝ
31 f1of 6602 . . . . . . . . . . 11 ((log ↾ ℝ+):ℝ+1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ)
3230, 31mp1i 13 . . . . . . . . . 10 (⊤ → (log ↾ ℝ+):ℝ+⟶ℝ)
3332feqmptd 6721 . . . . . . . . 9 (⊤ → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)))
34 fvres 6677 . . . . . . . . . 10 (𝑥 ∈ ℝ+ → ((log ↾ ℝ+)‘𝑥) = (log‘𝑥))
3534mpteq2ia 5123 . . . . . . . . 9 (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))
3633, 35eqtrdi 2809 . . . . . . . 8 (⊤ → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
3736oveq2d 7166 . . . . . . 7 (⊤ → (ℝ D (log ↾ ℝ+)) = (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))))
3829, 37syl5reqr 2808 . . . . . 6 (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
39 0cnd 10672 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → 0 ∈ ℂ)
40 1cnd 10674 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ) → 1 ∈ ℂ)
41 0cnd 10672 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ) → 0 ∈ ℂ)
42 1cnd 10674 . . . . . . . 8 (⊤ → 1 ∈ ℂ)
432, 42dvmptc 24657 . . . . . . 7 (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ 1)) = (𝑥 ∈ ℝ ↦ 0))
442, 40, 41, 43, 12, 14, 13, 18dvmptres 24662 . . . . . 6 (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ 1)) = (𝑥 ∈ ℝ+ ↦ 0))
452, 28, 27, 38, 6, 39, 44dvmptsub 24666 . . . . 5 (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − 1))) = (𝑥 ∈ ℝ+ ↦ ((1 / 𝑥) − 0)))
4627subid1d 11024 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((1 / 𝑥) − 0) = (1 / 𝑥))
4746mpteq2dva 5127 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ ((1 / 𝑥) − 0)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
4845, 47eqtrd 2793 . . . 4 (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − 1))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
492, 5, 6, 19, 24, 27, 48dvmptmul 24660 . . 3 (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ ((1 · ((log‘𝑥) − 1)) + ((1 / 𝑥) · 𝑥))))
5024mulid2d 10697 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 · ((log‘𝑥) − 1)) = ((log‘𝑥) − 1))
51 rpne0 12446 . . . . . . . 8 (𝑥 ∈ ℝ+𝑥 ≠ 0)
5251adantl 485 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
535, 52recid2d 11450 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((1 / 𝑥) · 𝑥) = 1)
5450, 53oveq12d 7168 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((1 · ((log‘𝑥) − 1)) + ((1 / 𝑥) · 𝑥)) = (((log‘𝑥) − 1) + 1))
55 ax-1cn 10633 . . . . . 6 1 ∈ ℂ
56 npcan 10933 . . . . . 6 (((log‘𝑥) ∈ ℂ ∧ 1 ∈ ℂ) → (((log‘𝑥) − 1) + 1) = (log‘𝑥))
5728, 55, 56sylancl 589 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (((log‘𝑥) − 1) + 1) = (log‘𝑥))
5854, 57eqtrd 2793 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((1 · ((log‘𝑥) − 1)) + ((1 / 𝑥) · 𝑥)) = (log‘𝑥))
5958mpteq2dva 5127 . . 3 (⊤ → (𝑥 ∈ ℝ+ ↦ ((1 · ((log‘𝑥) − 1)) + ((1 / 𝑥) · 𝑥))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
6049, 59eqtrd 2793 . 2 (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
6160mptru 1545 1 (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 399   = wceq 1538  ⊤wtru 1539   ∈ wcel 2111   ≠ wne 2951   ⊆ wss 3858  {cpr 4524   ↦ cmpt 5112  ran crn 5525   ↾ cres 5526  ⟶wf 6331  –1-1-onto→wf1o 6334  ‘cfv 6335  (class class class)co 7150  ℂcc 10573  ℝcr 10574  0cc0 10575  1c1 10576   + caddc 10578   · cmul 10580  +∞cpnf 10710   − cmin 10908   / cdiv 11335  ℝ+crp 12430  (,)cioo 12779  TopOpenctopn 16753  topGenctg 16769  ℂfldccnfld 20166   D cdv 24562  logclog 25245 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653  ax-addf 10654  ax-mulf 10655 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7405  df-om 7580  df-1st 7693  df-2nd 7694  df-supp 7836  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-2o 8113  df-er 8299  df-map 8418  df-pm 8419  df-ixp 8480  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-fsupp 8867  df-fi 8908  df-sup 8939  df-inf 8940  df-oi 9007  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-q 12389  df-rp 12431  df-xneg 12548  df-xadd 12549  df-xmul 12550  df-ioo 12783  df-ioc 12784  df-ico 12785  df-icc 12786  df-fz 12940  df-fzo 13083  df-fl 13211  df-mod 13287  df-seq 13419  df-exp 13480  df-fac 13684  df-bc 13713  df-hash 13741  df-shft 14474  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-limsup 14876  df-clim 14893  df-rlim 14894  df-sum 15091  df-ef 15469  df-sin 15471  df-cos 15472  df-pi 15474  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-starv 16638  df-sca 16639  df-vsca 16640  df-ip 16641  df-tset 16642  df-ple 16643  df-ds 16645  df-unif 16646  df-hom 16647  df-cco 16648  df-rest 16754  df-topn 16755  df-0g 16773  df-gsum 16774  df-topgen 16775  df-pt 16776  df-prds 16779  df-xrs 16833  df-qtop 16838  df-imas 16839  df-xps 16841  df-mre 16915  df-mrc 16916  df-acs 16918  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-submnd 18023  df-mulg 18292  df-cntz 18514  df-cmn 18975  df-psmet 20158  df-xmet 20159  df-met 20160  df-bl 20161  df-mopn 20162  df-fbas 20163  df-fg 20164  df-cnfld 20167  df-top 21594  df-topon 21611  df-topsp 21633  df-bases 21646  df-cld 21719  df-ntr 21720  df-cls 21721  df-nei 21798  df-lp 21836  df-perf 21837  df-cn 21927  df-cnp 21928  df-haus 22015  df-cmp 22087  df-tx 22262  df-hmeo 22455  df-fil 22546  df-fm 22638  df-flim 22639  df-flf 22640  df-xms 23022  df-ms 23023  df-tms 23024  df-cncf 23579  df-limc 24565  df-dv 24566  df-log 25247 This theorem is referenced by:  logfacbnd3  25906
 Copyright terms: Public domain W3C validator