| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > advlog | Structured version Visualization version GIF version | ||
| Description: The antiderivative of the logarithm. (Contributed by Mario Carneiro, 21-May-2016.) |
| Ref | Expression |
|---|---|
| advlog | ⊢ (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reelprrecn 11167 | . . . . 5 ⊢ ℝ ∈ {ℝ, ℂ} | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (⊤ → ℝ ∈ {ℝ, ℂ}) |
| 3 | rpre 12967 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ) | |
| 4 | 3 | adantl 481 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ) |
| 5 | 4 | recnd 11209 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ) |
| 6 | 1cnd 11176 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℂ) | |
| 7 | recn 11165 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
| 8 | 7 | adantl 481 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ) |
| 9 | 1red 11182 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → 1 ∈ ℝ) | |
| 10 | 2 | dvmptid 25868 | . . . . 5 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1)) |
| 11 | rpssre 12966 | . . . . . 6 ⊢ ℝ+ ⊆ ℝ | |
| 12 | 11 | a1i 11 | . . . . 5 ⊢ (⊤ → ℝ+ ⊆ ℝ) |
| 13 | tgioo4 24700 | . . . . 5 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | |
| 14 | eqid 2730 | . . . . 5 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 15 | ioorp 13393 | . . . . . . 7 ⊢ (0(,)+∞) = ℝ+ | |
| 16 | iooretop 24660 | . . . . . . 7 ⊢ (0(,)+∞) ∈ (topGen‘ran (,)) | |
| 17 | 15, 16 | eqeltrri 2826 | . . . . . 6 ⊢ ℝ+ ∈ (topGen‘ran (,)) |
| 18 | 17 | a1i 11 | . . . . 5 ⊢ (⊤ → ℝ+ ∈ (topGen‘ran (,))) |
| 19 | 2, 8, 9, 10, 12, 13, 14, 18 | dvmptres 25874 | . . . 4 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ 𝑥)) = (𝑥 ∈ ℝ+ ↦ 1)) |
| 20 | relogcl 26491 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ) | |
| 21 | 20 | adantl 481 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ) |
| 22 | peano2rem 11496 | . . . . . 6 ⊢ ((log‘𝑥) ∈ ℝ → ((log‘𝑥) − 1) ∈ ℝ) | |
| 23 | 21, 22 | syl 17 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) − 1) ∈ ℝ) |
| 24 | 23 | recnd 11209 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) − 1) ∈ ℂ) |
| 25 | rpreccl 12986 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+) | |
| 26 | 25 | adantl 481 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+) |
| 27 | 26 | rpcnd 13004 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℂ) |
| 28 | 21 | recnd 11209 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ) |
| 29 | relogf1o 26482 | . . . . . . . . . . 11 ⊢ (log ↾ ℝ+):ℝ+–1-1-onto→ℝ | |
| 30 | f1of 6803 | . . . . . . . . . . 11 ⊢ ((log ↾ ℝ+):ℝ+–1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ) | |
| 31 | 29, 30 | mp1i 13 | . . . . . . . . . 10 ⊢ (⊤ → (log ↾ ℝ+):ℝ+⟶ℝ) |
| 32 | 31 | feqmptd 6932 | . . . . . . . . 9 ⊢ (⊤ → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥))) |
| 33 | fvres 6880 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ+ → ((log ↾ ℝ+)‘𝑥) = (log‘𝑥)) | |
| 34 | 33 | mpteq2ia 5205 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) |
| 35 | 32, 34 | eqtrdi 2781 | . . . . . . . 8 ⊢ (⊤ → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) |
| 36 | 35 | oveq2d 7406 | . . . . . . 7 ⊢ (⊤ → (ℝ D (log ↾ ℝ+)) = (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))) |
| 37 | dvrelog 26553 | . . . . . . 7 ⊢ (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) | |
| 38 | 36, 37 | eqtr3di 2780 | . . . . . 6 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))) |
| 39 | 0cnd 11174 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → 0 ∈ ℂ) | |
| 40 | 1cnd 11176 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → 1 ∈ ℂ) | |
| 41 | 0cnd 11174 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → 0 ∈ ℂ) | |
| 42 | 1cnd 11176 | . . . . . . . 8 ⊢ (⊤ → 1 ∈ ℂ) | |
| 43 | 2, 42 | dvmptc 25869 | . . . . . . 7 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ 1)) = (𝑥 ∈ ℝ ↦ 0)) |
| 44 | 2, 40, 41, 43, 12, 13, 14, 18 | dvmptres 25874 | . . . . . 6 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ 1)) = (𝑥 ∈ ℝ+ ↦ 0)) |
| 45 | 2, 28, 27, 38, 6, 39, 44 | dvmptsub 25878 | . . . . 5 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − 1))) = (𝑥 ∈ ℝ+ ↦ ((1 / 𝑥) − 0))) |
| 46 | 27 | subid1d 11529 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → ((1 / 𝑥) − 0) = (1 / 𝑥)) |
| 47 | 46 | mpteq2dva 5203 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℝ+ ↦ ((1 / 𝑥) − 0)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))) |
| 48 | 45, 47 | eqtrd 2765 | . . . 4 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − 1))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))) |
| 49 | 2, 5, 6, 19, 24, 27, 48 | dvmptmul 25872 | . . 3 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ ((1 · ((log‘𝑥) − 1)) + ((1 / 𝑥) · 𝑥)))) |
| 50 | 24 | mullidd 11199 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 · ((log‘𝑥) − 1)) = ((log‘𝑥) − 1)) |
| 51 | rpne0 12975 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ≠ 0) | |
| 52 | 51 | adantl 481 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0) |
| 53 | 5, 52 | recid2d 11961 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → ((1 / 𝑥) · 𝑥) = 1) |
| 54 | 50, 53 | oveq12d 7408 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → ((1 · ((log‘𝑥) − 1)) + ((1 / 𝑥) · 𝑥)) = (((log‘𝑥) − 1) + 1)) |
| 55 | ax-1cn 11133 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 56 | npcan 11437 | . . . . . 6 ⊢ (((log‘𝑥) ∈ ℂ ∧ 1 ∈ ℂ) → (((log‘𝑥) − 1) + 1) = (log‘𝑥)) | |
| 57 | 28, 55, 56 | sylancl 586 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → (((log‘𝑥) − 1) + 1) = (log‘𝑥)) |
| 58 | 54, 57 | eqtrd 2765 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → ((1 · ((log‘𝑥) − 1)) + ((1 / 𝑥) · 𝑥)) = (log‘𝑥)) |
| 59 | 58 | mpteq2dva 5203 | . . 3 ⊢ (⊤ → (𝑥 ∈ ℝ+ ↦ ((1 · ((log‘𝑥) − 1)) + ((1 / 𝑥) · 𝑥))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) |
| 60 | 49, 59 | eqtrd 2765 | . 2 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) |
| 61 | 60 | mptru 1547 | 1 ⊢ (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ≠ wne 2926 ⊆ wss 3917 {cpr 4594 ↦ cmpt 5191 ran crn 5642 ↾ cres 5643 ⟶wf 6510 –1-1-onto→wf1o 6513 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℝcr 11074 0cc0 11075 1c1 11076 + caddc 11078 · cmul 11080 +∞cpnf 11212 − cmin 11412 / cdiv 11842 ℝ+crp 12958 (,)cioo 13313 TopOpenctopn 17391 topGenctg 17407 ℂfldccnfld 21271 D cdv 25771 logclog 26470 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13317 df-ioc 13318 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-fac 14246 df-bc 14275 df-hash 14303 df-shft 15040 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-limsup 15444 df-clim 15461 df-rlim 15462 df-sum 15660 df-ef 16040 df-sin 16042 df-cos 16043 df-pi 16045 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-pt 17414 df-prds 17417 df-xrs 17472 df-qtop 17477 df-imas 17478 df-xps 17480 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-mulg 19007 df-cntz 19256 df-cmn 19719 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-fbas 21268 df-fg 21269 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cld 22913 df-ntr 22914 df-cls 22915 df-nei 22992 df-lp 23030 df-perf 23031 df-cn 23121 df-cnp 23122 df-haus 23209 df-cmp 23281 df-tx 23456 df-hmeo 23649 df-fil 23740 df-fm 23832 df-flim 23833 df-flf 23834 df-xms 24215 df-ms 24216 df-tms 24217 df-cncf 24778 df-limc 25774 df-dv 25775 df-log 26472 |
| This theorem is referenced by: logfacbnd3 27141 |
| Copyright terms: Public domain | W3C validator |