| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > advlog | Structured version Visualization version GIF version | ||
| Description: The antiderivative of the logarithm. (Contributed by Mario Carneiro, 21-May-2016.) |
| Ref | Expression |
|---|---|
| advlog | ⊢ (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reelprrecn 11226 | . . . . 5 ⊢ ℝ ∈ {ℝ, ℂ} | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (⊤ → ℝ ∈ {ℝ, ℂ}) |
| 3 | rpre 13022 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ) | |
| 4 | 3 | adantl 481 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ) |
| 5 | 4 | recnd 11268 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ) |
| 6 | 1cnd 11235 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℂ) | |
| 7 | recn 11224 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
| 8 | 7 | adantl 481 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ) |
| 9 | 1red 11241 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → 1 ∈ ℝ) | |
| 10 | 2 | dvmptid 25918 | . . . . 5 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1)) |
| 11 | rpssre 13021 | . . . . . 6 ⊢ ℝ+ ⊆ ℝ | |
| 12 | 11 | a1i 11 | . . . . 5 ⊢ (⊤ → ℝ+ ⊆ ℝ) |
| 13 | tgioo4 24749 | . . . . 5 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | |
| 14 | eqid 2736 | . . . . 5 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 15 | ioorp 13447 | . . . . . . 7 ⊢ (0(,)+∞) = ℝ+ | |
| 16 | iooretop 24709 | . . . . . . 7 ⊢ (0(,)+∞) ∈ (topGen‘ran (,)) | |
| 17 | 15, 16 | eqeltrri 2832 | . . . . . 6 ⊢ ℝ+ ∈ (topGen‘ran (,)) |
| 18 | 17 | a1i 11 | . . . . 5 ⊢ (⊤ → ℝ+ ∈ (topGen‘ran (,))) |
| 19 | 2, 8, 9, 10, 12, 13, 14, 18 | dvmptres 25924 | . . . 4 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ 𝑥)) = (𝑥 ∈ ℝ+ ↦ 1)) |
| 20 | relogcl 26541 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ) | |
| 21 | 20 | adantl 481 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ) |
| 22 | peano2rem 11555 | . . . . . 6 ⊢ ((log‘𝑥) ∈ ℝ → ((log‘𝑥) − 1) ∈ ℝ) | |
| 23 | 21, 22 | syl 17 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) − 1) ∈ ℝ) |
| 24 | 23 | recnd 11268 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) − 1) ∈ ℂ) |
| 25 | rpreccl 13040 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+) | |
| 26 | 25 | adantl 481 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+) |
| 27 | 26 | rpcnd 13058 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℂ) |
| 28 | 21 | recnd 11268 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ) |
| 29 | relogf1o 26532 | . . . . . . . . . . 11 ⊢ (log ↾ ℝ+):ℝ+–1-1-onto→ℝ | |
| 30 | f1of 6823 | . . . . . . . . . . 11 ⊢ ((log ↾ ℝ+):ℝ+–1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ) | |
| 31 | 29, 30 | mp1i 13 | . . . . . . . . . 10 ⊢ (⊤ → (log ↾ ℝ+):ℝ+⟶ℝ) |
| 32 | 31 | feqmptd 6952 | . . . . . . . . 9 ⊢ (⊤ → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥))) |
| 33 | fvres 6900 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ+ → ((log ↾ ℝ+)‘𝑥) = (log‘𝑥)) | |
| 34 | 33 | mpteq2ia 5221 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) |
| 35 | 32, 34 | eqtrdi 2787 | . . . . . . . 8 ⊢ (⊤ → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) |
| 36 | 35 | oveq2d 7426 | . . . . . . 7 ⊢ (⊤ → (ℝ D (log ↾ ℝ+)) = (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))) |
| 37 | dvrelog 26603 | . . . . . . 7 ⊢ (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) | |
| 38 | 36, 37 | eqtr3di 2786 | . . . . . 6 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))) |
| 39 | 0cnd 11233 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → 0 ∈ ℂ) | |
| 40 | 1cnd 11235 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → 1 ∈ ℂ) | |
| 41 | 0cnd 11233 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → 0 ∈ ℂ) | |
| 42 | 1cnd 11235 | . . . . . . . 8 ⊢ (⊤ → 1 ∈ ℂ) | |
| 43 | 2, 42 | dvmptc 25919 | . . . . . . 7 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ 1)) = (𝑥 ∈ ℝ ↦ 0)) |
| 44 | 2, 40, 41, 43, 12, 13, 14, 18 | dvmptres 25924 | . . . . . 6 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ 1)) = (𝑥 ∈ ℝ+ ↦ 0)) |
| 45 | 2, 28, 27, 38, 6, 39, 44 | dvmptsub 25928 | . . . . 5 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − 1))) = (𝑥 ∈ ℝ+ ↦ ((1 / 𝑥) − 0))) |
| 46 | 27 | subid1d 11588 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → ((1 / 𝑥) − 0) = (1 / 𝑥)) |
| 47 | 46 | mpteq2dva 5219 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℝ+ ↦ ((1 / 𝑥) − 0)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))) |
| 48 | 45, 47 | eqtrd 2771 | . . . 4 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − 1))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))) |
| 49 | 2, 5, 6, 19, 24, 27, 48 | dvmptmul 25922 | . . 3 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ ((1 · ((log‘𝑥) − 1)) + ((1 / 𝑥) · 𝑥)))) |
| 50 | 24 | mullidd 11258 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 · ((log‘𝑥) − 1)) = ((log‘𝑥) − 1)) |
| 51 | rpne0 13030 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ≠ 0) | |
| 52 | 51 | adantl 481 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0) |
| 53 | 5, 52 | recid2d 12018 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → ((1 / 𝑥) · 𝑥) = 1) |
| 54 | 50, 53 | oveq12d 7428 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → ((1 · ((log‘𝑥) − 1)) + ((1 / 𝑥) · 𝑥)) = (((log‘𝑥) − 1) + 1)) |
| 55 | ax-1cn 11192 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 56 | npcan 11496 | . . . . . 6 ⊢ (((log‘𝑥) ∈ ℂ ∧ 1 ∈ ℂ) → (((log‘𝑥) − 1) + 1) = (log‘𝑥)) | |
| 57 | 28, 55, 56 | sylancl 586 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → (((log‘𝑥) − 1) + 1) = (log‘𝑥)) |
| 58 | 54, 57 | eqtrd 2771 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → ((1 · ((log‘𝑥) − 1)) + ((1 / 𝑥) · 𝑥)) = (log‘𝑥)) |
| 59 | 58 | mpteq2dva 5219 | . . 3 ⊢ (⊤ → (𝑥 ∈ ℝ+ ↦ ((1 · ((log‘𝑥) − 1)) + ((1 / 𝑥) · 𝑥))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) |
| 60 | 49, 59 | eqtrd 2771 | . 2 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) |
| 61 | 60 | mptru 1547 | 1 ⊢ (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ≠ wne 2933 ⊆ wss 3931 {cpr 4608 ↦ cmpt 5206 ran crn 5660 ↾ cres 5661 ⟶wf 6532 –1-1-onto→wf1o 6535 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 ℝcr 11133 0cc0 11134 1c1 11135 + caddc 11137 · cmul 11139 +∞cpnf 11271 − cmin 11471 / cdiv 11899 ℝ+crp 13013 (,)cioo 13367 TopOpenctopn 17440 topGenctg 17456 ℂfldccnfld 21320 D cdv 25821 logclog 26520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-fi 9428 df-sup 9459 df-inf 9460 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-q 12970 df-rp 13014 df-xneg 13133 df-xadd 13134 df-xmul 13135 df-ioo 13371 df-ioc 13372 df-ico 13373 df-icc 13374 df-fz 13530 df-fzo 13677 df-fl 13814 df-mod 13892 df-seq 14025 df-exp 14085 df-fac 14297 df-bc 14326 df-hash 14354 df-shft 15091 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-limsup 15492 df-clim 15509 df-rlim 15510 df-sum 15708 df-ef 16088 df-sin 16090 df-cos 16091 df-pi 16093 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-hom 17300 df-cco 17301 df-rest 17441 df-topn 17442 df-0g 17460 df-gsum 17461 df-topgen 17462 df-pt 17463 df-prds 17466 df-xrs 17521 df-qtop 17526 df-imas 17527 df-xps 17529 df-mre 17603 df-mrc 17604 df-acs 17606 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-mulg 19056 df-cntz 19305 df-cmn 19768 df-psmet 21312 df-xmet 21313 df-met 21314 df-bl 21315 df-mopn 21316 df-fbas 21317 df-fg 21318 df-cnfld 21321 df-top 22837 df-topon 22854 df-topsp 22876 df-bases 22889 df-cld 22962 df-ntr 22963 df-cls 22964 df-nei 23041 df-lp 23079 df-perf 23080 df-cn 23170 df-cnp 23171 df-haus 23258 df-cmp 23330 df-tx 23505 df-hmeo 23698 df-fil 23789 df-fm 23881 df-flim 23882 df-flf 23883 df-xms 24264 df-ms 24265 df-tms 24266 df-cncf 24827 df-limc 25824 df-dv 25825 df-log 26522 |
| This theorem is referenced by: logfacbnd3 27191 |
| Copyright terms: Public domain | W3C validator |