Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > advlog | Structured version Visualization version GIF version |
Description: The antiderivative of the logarithm. (Contributed by Mario Carneiro, 21-May-2016.) |
Ref | Expression |
---|---|
advlog | ⊢ (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reelprrecn 10667 | . . . . 5 ⊢ ℝ ∈ {ℝ, ℂ} | |
2 | 1 | a1i 11 | . . . 4 ⊢ (⊤ → ℝ ∈ {ℝ, ℂ}) |
3 | rpre 12438 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ) | |
4 | 3 | adantl 485 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ) |
5 | 4 | recnd 10707 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ) |
6 | 1cnd 10674 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℂ) | |
7 | recn 10665 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
8 | 7 | adantl 485 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ) |
9 | 1red 10680 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → 1 ∈ ℝ) | |
10 | 2 | dvmptid 24656 | . . . . 5 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1)) |
11 | rpssre 12437 | . . . . . 6 ⊢ ℝ+ ⊆ ℝ | |
12 | 11 | a1i 11 | . . . . 5 ⊢ (⊤ → ℝ+ ⊆ ℝ) |
13 | eqid 2758 | . . . . . 6 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
14 | 13 | tgioo2 23504 | . . . . 5 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) |
15 | ioorp 12857 | . . . . . . 7 ⊢ (0(,)+∞) = ℝ+ | |
16 | iooretop 23467 | . . . . . . 7 ⊢ (0(,)+∞) ∈ (topGen‘ran (,)) | |
17 | 15, 16 | eqeltrri 2849 | . . . . . 6 ⊢ ℝ+ ∈ (topGen‘ran (,)) |
18 | 17 | a1i 11 | . . . . 5 ⊢ (⊤ → ℝ+ ∈ (topGen‘ran (,))) |
19 | 2, 8, 9, 10, 12, 14, 13, 18 | dvmptres 24662 | . . . 4 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ 𝑥)) = (𝑥 ∈ ℝ+ ↦ 1)) |
20 | relogcl 25266 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ) | |
21 | 20 | adantl 485 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ) |
22 | peano2rem 10991 | . . . . . 6 ⊢ ((log‘𝑥) ∈ ℝ → ((log‘𝑥) − 1) ∈ ℝ) | |
23 | 21, 22 | syl 17 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) − 1) ∈ ℝ) |
24 | 23 | recnd 10707 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) − 1) ∈ ℂ) |
25 | rpreccl 12456 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+) | |
26 | 25 | adantl 485 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+) |
27 | 26 | rpcnd 12474 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℂ) |
28 | 21 | recnd 10707 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ) |
29 | dvrelog 25327 | . . . . . . 7 ⊢ (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) | |
30 | relogf1o 25257 | . . . . . . . . . . 11 ⊢ (log ↾ ℝ+):ℝ+–1-1-onto→ℝ | |
31 | f1of 6602 | . . . . . . . . . . 11 ⊢ ((log ↾ ℝ+):ℝ+–1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ) | |
32 | 30, 31 | mp1i 13 | . . . . . . . . . 10 ⊢ (⊤ → (log ↾ ℝ+):ℝ+⟶ℝ) |
33 | 32 | feqmptd 6721 | . . . . . . . . 9 ⊢ (⊤ → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥))) |
34 | fvres 6677 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ+ → ((log ↾ ℝ+)‘𝑥) = (log‘𝑥)) | |
35 | 34 | mpteq2ia 5123 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) |
36 | 33, 35 | eqtrdi 2809 | . . . . . . . 8 ⊢ (⊤ → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) |
37 | 36 | oveq2d 7166 | . . . . . . 7 ⊢ (⊤ → (ℝ D (log ↾ ℝ+)) = (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))) |
38 | 29, 37 | syl5reqr 2808 | . . . . . 6 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))) |
39 | 0cnd 10672 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → 0 ∈ ℂ) | |
40 | 1cnd 10674 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → 1 ∈ ℂ) | |
41 | 0cnd 10672 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → 0 ∈ ℂ) | |
42 | 1cnd 10674 | . . . . . . . 8 ⊢ (⊤ → 1 ∈ ℂ) | |
43 | 2, 42 | dvmptc 24657 | . . . . . . 7 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ 1)) = (𝑥 ∈ ℝ ↦ 0)) |
44 | 2, 40, 41, 43, 12, 14, 13, 18 | dvmptres 24662 | . . . . . 6 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ 1)) = (𝑥 ∈ ℝ+ ↦ 0)) |
45 | 2, 28, 27, 38, 6, 39, 44 | dvmptsub 24666 | . . . . 5 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − 1))) = (𝑥 ∈ ℝ+ ↦ ((1 / 𝑥) − 0))) |
46 | 27 | subid1d 11024 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → ((1 / 𝑥) − 0) = (1 / 𝑥)) |
47 | 46 | mpteq2dva 5127 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℝ+ ↦ ((1 / 𝑥) − 0)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))) |
48 | 45, 47 | eqtrd 2793 | . . . 4 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − 1))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))) |
49 | 2, 5, 6, 19, 24, 27, 48 | dvmptmul 24660 | . . 3 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ ((1 · ((log‘𝑥) − 1)) + ((1 / 𝑥) · 𝑥)))) |
50 | 24 | mulid2d 10697 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 · ((log‘𝑥) − 1)) = ((log‘𝑥) − 1)) |
51 | rpne0 12446 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ≠ 0) | |
52 | 51 | adantl 485 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0) |
53 | 5, 52 | recid2d 11450 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → ((1 / 𝑥) · 𝑥) = 1) |
54 | 50, 53 | oveq12d 7168 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → ((1 · ((log‘𝑥) − 1)) + ((1 / 𝑥) · 𝑥)) = (((log‘𝑥) − 1) + 1)) |
55 | ax-1cn 10633 | . . . . . 6 ⊢ 1 ∈ ℂ | |
56 | npcan 10933 | . . . . . 6 ⊢ (((log‘𝑥) ∈ ℂ ∧ 1 ∈ ℂ) → (((log‘𝑥) − 1) + 1) = (log‘𝑥)) | |
57 | 28, 55, 56 | sylancl 589 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → (((log‘𝑥) − 1) + 1) = (log‘𝑥)) |
58 | 54, 57 | eqtrd 2793 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → ((1 · ((log‘𝑥) − 1)) + ((1 / 𝑥) · 𝑥)) = (log‘𝑥)) |
59 | 58 | mpteq2dva 5127 | . . 3 ⊢ (⊤ → (𝑥 ∈ ℝ+ ↦ ((1 · ((log‘𝑥) − 1)) + ((1 / 𝑥) · 𝑥))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) |
60 | 49, 59 | eqtrd 2793 | . 2 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) |
61 | 60 | mptru 1545 | 1 ⊢ (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1538 ⊤wtru 1539 ∈ wcel 2111 ≠ wne 2951 ⊆ wss 3858 {cpr 4524 ↦ cmpt 5112 ran crn 5525 ↾ cres 5526 ⟶wf 6331 –1-1-onto→wf1o 6334 ‘cfv 6335 (class class class)co 7150 ℂcc 10573 ℝcr 10574 0cc0 10575 1c1 10576 + caddc 10578 · cmul 10580 +∞cpnf 10710 − cmin 10908 / cdiv 11335 ℝ+crp 12430 (,)cioo 12779 TopOpenctopn 16753 topGenctg 16769 ℂfldccnfld 20166 D cdv 24562 logclog 25245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-inf2 9137 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 ax-addf 10654 ax-mulf 10655 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-iin 4886 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-se 5484 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-isom 6344 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-of 7405 df-om 7580 df-1st 7693 df-2nd 7694 df-supp 7836 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-2o 8113 df-er 8299 df-map 8418 df-pm 8419 df-ixp 8480 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-fsupp 8867 df-fi 8908 df-sup 8939 df-inf 8940 df-oi 9007 df-card 9401 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-7 11742 df-8 11743 df-9 11744 df-n0 11935 df-z 12021 df-dec 12138 df-uz 12283 df-q 12389 df-rp 12431 df-xneg 12548 df-xadd 12549 df-xmul 12550 df-ioo 12783 df-ioc 12784 df-ico 12785 df-icc 12786 df-fz 12940 df-fzo 13083 df-fl 13211 df-mod 13287 df-seq 13419 df-exp 13480 df-fac 13684 df-bc 13713 df-hash 13741 df-shft 14474 df-cj 14506 df-re 14507 df-im 14508 df-sqrt 14642 df-abs 14643 df-limsup 14876 df-clim 14893 df-rlim 14894 df-sum 15091 df-ef 15469 df-sin 15471 df-cos 15472 df-pi 15474 df-struct 16543 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-ress 16549 df-plusg 16636 df-mulr 16637 df-starv 16638 df-sca 16639 df-vsca 16640 df-ip 16641 df-tset 16642 df-ple 16643 df-ds 16645 df-unif 16646 df-hom 16647 df-cco 16648 df-rest 16754 df-topn 16755 df-0g 16773 df-gsum 16774 df-topgen 16775 df-pt 16776 df-prds 16779 df-xrs 16833 df-qtop 16838 df-imas 16839 df-xps 16841 df-mre 16915 df-mrc 16916 df-acs 16918 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-submnd 18023 df-mulg 18292 df-cntz 18514 df-cmn 18975 df-psmet 20158 df-xmet 20159 df-met 20160 df-bl 20161 df-mopn 20162 df-fbas 20163 df-fg 20164 df-cnfld 20167 df-top 21594 df-topon 21611 df-topsp 21633 df-bases 21646 df-cld 21719 df-ntr 21720 df-cls 21721 df-nei 21798 df-lp 21836 df-perf 21837 df-cn 21927 df-cnp 21928 df-haus 22015 df-cmp 22087 df-tx 22262 df-hmeo 22455 df-fil 22546 df-fm 22638 df-flim 22639 df-flf 22640 df-xms 23022 df-ms 23023 df-tms 23024 df-cncf 23579 df-limc 24565 df-dv 24566 df-log 25247 |
This theorem is referenced by: logfacbnd3 25906 |
Copyright terms: Public domain | W3C validator |