| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > advlog | Structured version Visualization version GIF version | ||
| Description: The antiderivative of the logarithm. (Contributed by Mario Carneiro, 21-May-2016.) |
| Ref | Expression |
|---|---|
| advlog | ⊢ (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reelprrecn 11160 | . . . . 5 ⊢ ℝ ∈ {ℝ, ℂ} | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (⊤ → ℝ ∈ {ℝ, ℂ}) |
| 3 | rpre 12960 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ) | |
| 4 | 3 | adantl 481 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ) |
| 5 | 4 | recnd 11202 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ) |
| 6 | 1cnd 11169 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℂ) | |
| 7 | recn 11158 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
| 8 | 7 | adantl 481 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ) |
| 9 | 1red 11175 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → 1 ∈ ℝ) | |
| 10 | 2 | dvmptid 25861 | . . . . 5 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1)) |
| 11 | rpssre 12959 | . . . . . 6 ⊢ ℝ+ ⊆ ℝ | |
| 12 | 11 | a1i 11 | . . . . 5 ⊢ (⊤ → ℝ+ ⊆ ℝ) |
| 13 | tgioo4 24693 | . . . . 5 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | |
| 14 | eqid 2729 | . . . . 5 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 15 | ioorp 13386 | . . . . . . 7 ⊢ (0(,)+∞) = ℝ+ | |
| 16 | iooretop 24653 | . . . . . . 7 ⊢ (0(,)+∞) ∈ (topGen‘ran (,)) | |
| 17 | 15, 16 | eqeltrri 2825 | . . . . . 6 ⊢ ℝ+ ∈ (topGen‘ran (,)) |
| 18 | 17 | a1i 11 | . . . . 5 ⊢ (⊤ → ℝ+ ∈ (topGen‘ran (,))) |
| 19 | 2, 8, 9, 10, 12, 13, 14, 18 | dvmptres 25867 | . . . 4 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ 𝑥)) = (𝑥 ∈ ℝ+ ↦ 1)) |
| 20 | relogcl 26484 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ) | |
| 21 | 20 | adantl 481 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ) |
| 22 | peano2rem 11489 | . . . . . 6 ⊢ ((log‘𝑥) ∈ ℝ → ((log‘𝑥) − 1) ∈ ℝ) | |
| 23 | 21, 22 | syl 17 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) − 1) ∈ ℝ) |
| 24 | 23 | recnd 11202 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) − 1) ∈ ℂ) |
| 25 | rpreccl 12979 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+) | |
| 26 | 25 | adantl 481 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+) |
| 27 | 26 | rpcnd 12997 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℂ) |
| 28 | 21 | recnd 11202 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ) |
| 29 | relogf1o 26475 | . . . . . . . . . . 11 ⊢ (log ↾ ℝ+):ℝ+–1-1-onto→ℝ | |
| 30 | f1of 6800 | . . . . . . . . . . 11 ⊢ ((log ↾ ℝ+):ℝ+–1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ) | |
| 31 | 29, 30 | mp1i 13 | . . . . . . . . . 10 ⊢ (⊤ → (log ↾ ℝ+):ℝ+⟶ℝ) |
| 32 | 31 | feqmptd 6929 | . . . . . . . . 9 ⊢ (⊤ → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥))) |
| 33 | fvres 6877 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ+ → ((log ↾ ℝ+)‘𝑥) = (log‘𝑥)) | |
| 34 | 33 | mpteq2ia 5202 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) |
| 35 | 32, 34 | eqtrdi 2780 | . . . . . . . 8 ⊢ (⊤ → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) |
| 36 | 35 | oveq2d 7403 | . . . . . . 7 ⊢ (⊤ → (ℝ D (log ↾ ℝ+)) = (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))) |
| 37 | dvrelog 26546 | . . . . . . 7 ⊢ (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) | |
| 38 | 36, 37 | eqtr3di 2779 | . . . . . 6 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))) |
| 39 | 0cnd 11167 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → 0 ∈ ℂ) | |
| 40 | 1cnd 11169 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → 1 ∈ ℂ) | |
| 41 | 0cnd 11167 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → 0 ∈ ℂ) | |
| 42 | 1cnd 11169 | . . . . . . . 8 ⊢ (⊤ → 1 ∈ ℂ) | |
| 43 | 2, 42 | dvmptc 25862 | . . . . . . 7 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ 1)) = (𝑥 ∈ ℝ ↦ 0)) |
| 44 | 2, 40, 41, 43, 12, 13, 14, 18 | dvmptres 25867 | . . . . . 6 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ 1)) = (𝑥 ∈ ℝ+ ↦ 0)) |
| 45 | 2, 28, 27, 38, 6, 39, 44 | dvmptsub 25871 | . . . . 5 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − 1))) = (𝑥 ∈ ℝ+ ↦ ((1 / 𝑥) − 0))) |
| 46 | 27 | subid1d 11522 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → ((1 / 𝑥) − 0) = (1 / 𝑥)) |
| 47 | 46 | mpteq2dva 5200 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℝ+ ↦ ((1 / 𝑥) − 0)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))) |
| 48 | 45, 47 | eqtrd 2764 | . . . 4 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − 1))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))) |
| 49 | 2, 5, 6, 19, 24, 27, 48 | dvmptmul 25865 | . . 3 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ ((1 · ((log‘𝑥) − 1)) + ((1 / 𝑥) · 𝑥)))) |
| 50 | 24 | mullidd 11192 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 · ((log‘𝑥) − 1)) = ((log‘𝑥) − 1)) |
| 51 | rpne0 12968 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ≠ 0) | |
| 52 | 51 | adantl 481 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0) |
| 53 | 5, 52 | recid2d 11954 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → ((1 / 𝑥) · 𝑥) = 1) |
| 54 | 50, 53 | oveq12d 7405 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → ((1 · ((log‘𝑥) − 1)) + ((1 / 𝑥) · 𝑥)) = (((log‘𝑥) − 1) + 1)) |
| 55 | ax-1cn 11126 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 56 | npcan 11430 | . . . . . 6 ⊢ (((log‘𝑥) ∈ ℂ ∧ 1 ∈ ℂ) → (((log‘𝑥) − 1) + 1) = (log‘𝑥)) | |
| 57 | 28, 55, 56 | sylancl 586 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → (((log‘𝑥) − 1) + 1) = (log‘𝑥)) |
| 58 | 54, 57 | eqtrd 2764 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → ((1 · ((log‘𝑥) − 1)) + ((1 / 𝑥) · 𝑥)) = (log‘𝑥)) |
| 59 | 58 | mpteq2dva 5200 | . . 3 ⊢ (⊤ → (𝑥 ∈ ℝ+ ↦ ((1 · ((log‘𝑥) − 1)) + ((1 / 𝑥) · 𝑥))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) |
| 60 | 49, 59 | eqtrd 2764 | . 2 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) |
| 61 | 60 | mptru 1547 | 1 ⊢ (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3914 {cpr 4591 ↦ cmpt 5188 ran crn 5639 ↾ cres 5640 ⟶wf 6507 –1-1-onto→wf1o 6510 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℝcr 11067 0cc0 11068 1c1 11069 + caddc 11071 · cmul 11073 +∞cpnf 11205 − cmin 11405 / cdiv 11835 ℝ+crp 12951 (,)cioo 13306 TopOpenctopn 17384 topGenctg 17400 ℂfldccnfld 21264 D cdv 25764 logclog 26463 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ioc 13311 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-fac 14239 df-bc 14268 df-hash 14296 df-shft 15033 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-limsup 15437 df-clim 15454 df-rlim 15455 df-sum 15653 df-ef 16033 df-sin 16035 df-cos 16036 df-pi 16038 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-hom 17244 df-cco 17245 df-rest 17385 df-topn 17386 df-0g 17404 df-gsum 17405 df-topgen 17406 df-pt 17407 df-prds 17410 df-xrs 17465 df-qtop 17470 df-imas 17471 df-xps 17473 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-mulg 19000 df-cntz 19249 df-cmn 19712 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-fbas 21261 df-fg 21262 df-cnfld 21265 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-lp 23023 df-perf 23024 df-cn 23114 df-cnp 23115 df-haus 23202 df-cmp 23274 df-tx 23449 df-hmeo 23642 df-fil 23733 df-fm 23825 df-flim 23826 df-flf 23827 df-xms 24208 df-ms 24209 df-tms 24210 df-cncf 24771 df-limc 25767 df-dv 25768 df-log 26465 |
| This theorem is referenced by: logfacbnd3 27134 |
| Copyright terms: Public domain | W3C validator |