![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > advlog | Structured version Visualization version GIF version |
Description: The antiderivative of the logarithm. (Contributed by Mario Carneiro, 21-May-2016.) |
Ref | Expression |
---|---|
advlog | ⊢ (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reelprrecn 11197 | . . . . 5 ⊢ ℝ ∈ {ℝ, ℂ} | |
2 | 1 | a1i 11 | . . . 4 ⊢ (⊤ → ℝ ∈ {ℝ, ℂ}) |
3 | rpre 12978 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ) | |
4 | 3 | adantl 481 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ) |
5 | 4 | recnd 11238 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ) |
6 | 1cnd 11205 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℂ) | |
7 | recn 11195 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℂ) | |
8 | 7 | adantl 481 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ) |
9 | 1red 11211 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → 1 ∈ ℝ) | |
10 | 2 | dvmptid 25799 | . . . . 5 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1)) |
11 | rpssre 12977 | . . . . . 6 ⊢ ℝ+ ⊆ ℝ | |
12 | 11 | a1i 11 | . . . . 5 ⊢ (⊤ → ℝ+ ⊆ ℝ) |
13 | eqid 2724 | . . . . . 6 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
14 | 13 | tgioo2 24629 | . . . . 5 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) |
15 | ioorp 13398 | . . . . . . 7 ⊢ (0(,)+∞) = ℝ+ | |
16 | iooretop 24592 | . . . . . . 7 ⊢ (0(,)+∞) ∈ (topGen‘ran (,)) | |
17 | 15, 16 | eqeltrri 2822 | . . . . . 6 ⊢ ℝ+ ∈ (topGen‘ran (,)) |
18 | 17 | a1i 11 | . . . . 5 ⊢ (⊤ → ℝ+ ∈ (topGen‘ran (,))) |
19 | 2, 8, 9, 10, 12, 14, 13, 18 | dvmptres 25805 | . . . 4 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ 𝑥)) = (𝑥 ∈ ℝ+ ↦ 1)) |
20 | relogcl 26414 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ) | |
21 | 20 | adantl 481 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ) |
22 | peano2rem 11523 | . . . . . 6 ⊢ ((log‘𝑥) ∈ ℝ → ((log‘𝑥) − 1) ∈ ℝ) | |
23 | 21, 22 | syl 17 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) − 1) ∈ ℝ) |
24 | 23 | recnd 11238 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) − 1) ∈ ℂ) |
25 | rpreccl 12996 | . . . . . 6 ⊢ (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+) | |
26 | 25 | adantl 481 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+) |
27 | 26 | rpcnd 13014 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℂ) |
28 | 21 | recnd 11238 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ) |
29 | relogf1o 26405 | . . . . . . . . . . 11 ⊢ (log ↾ ℝ+):ℝ+–1-1-onto→ℝ | |
30 | f1of 6823 | . . . . . . . . . . 11 ⊢ ((log ↾ ℝ+):ℝ+–1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ) | |
31 | 29, 30 | mp1i 13 | . . . . . . . . . 10 ⊢ (⊤ → (log ↾ ℝ+):ℝ+⟶ℝ) |
32 | 31 | feqmptd 6950 | . . . . . . . . 9 ⊢ (⊤ → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥))) |
33 | fvres 6900 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ+ → ((log ↾ ℝ+)‘𝑥) = (log‘𝑥)) | |
34 | 33 | mpteq2ia 5241 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) |
35 | 32, 34 | eqtrdi 2780 | . . . . . . . 8 ⊢ (⊤ → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) |
36 | 35 | oveq2d 7417 | . . . . . . 7 ⊢ (⊤ → (ℝ D (log ↾ ℝ+)) = (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))) |
37 | dvrelog 26475 | . . . . . . 7 ⊢ (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)) | |
38 | 36, 37 | eqtr3di 2779 | . . . . . 6 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))) |
39 | 0cnd 11203 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → 0 ∈ ℂ) | |
40 | 1cnd 11205 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → 1 ∈ ℂ) | |
41 | 0cnd 11203 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → 0 ∈ ℂ) | |
42 | 1cnd 11205 | . . . . . . . 8 ⊢ (⊤ → 1 ∈ ℂ) | |
43 | 2, 42 | dvmptc 25800 | . . . . . . 7 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ 1)) = (𝑥 ∈ ℝ ↦ 0)) |
44 | 2, 40, 41, 43, 12, 14, 13, 18 | dvmptres 25805 | . . . . . 6 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ 1)) = (𝑥 ∈ ℝ+ ↦ 0)) |
45 | 2, 28, 27, 38, 6, 39, 44 | dvmptsub 25809 | . . . . 5 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − 1))) = (𝑥 ∈ ℝ+ ↦ ((1 / 𝑥) − 0))) |
46 | 27 | subid1d 11556 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → ((1 / 𝑥) − 0) = (1 / 𝑥)) |
47 | 46 | mpteq2dva 5238 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℝ+ ↦ ((1 / 𝑥) − 0)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))) |
48 | 45, 47 | eqtrd 2764 | . . . 4 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) − 1))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))) |
49 | 2, 5, 6, 19, 24, 27, 48 | dvmptmul 25803 | . . 3 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ ((1 · ((log‘𝑥) − 1)) + ((1 / 𝑥) · 𝑥)))) |
50 | 24 | mullidd 11228 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → (1 · ((log‘𝑥) − 1)) = ((log‘𝑥) − 1)) |
51 | rpne0 12986 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ≠ 0) | |
52 | 51 | adantl 481 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0) |
53 | 5, 52 | recid2d 11982 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → ((1 / 𝑥) · 𝑥) = 1) |
54 | 50, 53 | oveq12d 7419 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → ((1 · ((log‘𝑥) − 1)) + ((1 / 𝑥) · 𝑥)) = (((log‘𝑥) − 1) + 1)) |
55 | ax-1cn 11163 | . . . . . 6 ⊢ 1 ∈ ℂ | |
56 | npcan 11465 | . . . . . 6 ⊢ (((log‘𝑥) ∈ ℂ ∧ 1 ∈ ℂ) → (((log‘𝑥) − 1) + 1) = (log‘𝑥)) | |
57 | 28, 55, 56 | sylancl 585 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → (((log‘𝑥) − 1) + 1) = (log‘𝑥)) |
58 | 54, 57 | eqtrd 2764 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ+) → ((1 · ((log‘𝑥) − 1)) + ((1 / 𝑥) · 𝑥)) = (log‘𝑥)) |
59 | 58 | mpteq2dva 5238 | . . 3 ⊢ (⊤ → (𝑥 ∈ ℝ+ ↦ ((1 · ((log‘𝑥) − 1)) + ((1 / 𝑥) · 𝑥))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) |
60 | 49, 59 | eqtrd 2764 | . 2 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) |
61 | 60 | mptru 1540 | 1 ⊢ (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · ((log‘𝑥) − 1)))) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1533 ⊤wtru 1534 ∈ wcel 2098 ≠ wne 2932 ⊆ wss 3940 {cpr 4622 ↦ cmpt 5221 ran crn 5667 ↾ cres 5668 ⟶wf 6529 –1-1-onto→wf1o 6532 ‘cfv 6533 (class class class)co 7401 ℂcc 11103 ℝcr 11104 0cc0 11105 1c1 11106 + caddc 11108 · cmul 11110 +∞cpnf 11241 − cmin 11440 / cdiv 11867 ℝ+crp 12970 (,)cioo 13320 TopOpenctopn 17363 topGenctg 17379 ℂfldccnfld 21223 D cdv 25702 logclog 26393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-inf2 9631 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-pre-sup 11183 ax-addf 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-om 7849 df-1st 7968 df-2nd 7969 df-supp 8141 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-er 8698 df-map 8817 df-pm 8818 df-ixp 8887 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-fsupp 9357 df-fi 9401 df-sup 9432 df-inf 9433 df-oi 9500 df-card 9929 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-ioo 13324 df-ioc 13325 df-ico 13326 df-icc 13327 df-fz 13481 df-fzo 13624 df-fl 13753 df-mod 13831 df-seq 13963 df-exp 14024 df-fac 14230 df-bc 14259 df-hash 14287 df-shft 15010 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-limsup 15411 df-clim 15428 df-rlim 15429 df-sum 15629 df-ef 16007 df-sin 16009 df-cos 16010 df-pi 16012 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-starv 17208 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-unif 17216 df-hom 17217 df-cco 17218 df-rest 17364 df-topn 17365 df-0g 17383 df-gsum 17384 df-topgen 17385 df-pt 17386 df-prds 17389 df-xrs 17444 df-qtop 17449 df-imas 17450 df-xps 17452 df-mre 17526 df-mrc 17527 df-acs 17529 df-mgm 18560 df-sgrp 18639 df-mnd 18655 df-submnd 18701 df-mulg 18983 df-cntz 19218 df-cmn 19687 df-psmet 21215 df-xmet 21216 df-met 21217 df-bl 21218 df-mopn 21219 df-fbas 21220 df-fg 21221 df-cnfld 21224 df-top 22706 df-topon 22723 df-topsp 22745 df-bases 22759 df-cld 22833 df-ntr 22834 df-cls 22835 df-nei 22912 df-lp 22950 df-perf 22951 df-cn 23041 df-cnp 23042 df-haus 23129 df-cmp 23201 df-tx 23376 df-hmeo 23569 df-fil 23660 df-fm 23752 df-flim 23753 df-flf 23754 df-xms 24136 df-ms 24137 df-tms 24138 df-cncf 24708 df-limc 25705 df-dv 25706 df-log 26395 |
This theorem is referenced by: logfacbnd3 27060 |
Copyright terms: Public domain | W3C validator |