MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipcnval Structured version   Visualization version   GIF version

Theorem ipcnval 14953
Description: Standard inner product on complex numbers. (Contributed by NM, 29-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
ipcnval ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (โ„œโ€˜(๐ด ยท (โˆ—โ€˜๐ต))) = (((โ„œโ€˜๐ด) ยท (โ„œโ€˜๐ต)) + ((โ„‘โ€˜๐ด) ยท (โ„‘โ€˜๐ต))))

Proof of Theorem ipcnval
StepHypRef Expression
1 cjcl 14915 . . 3 (๐ต โˆˆ โ„‚ โ†’ (โˆ—โ€˜๐ต) โˆˆ โ„‚)
2 remul 14939 . . 3 ((๐ด โˆˆ โ„‚ โˆง (โˆ—โ€˜๐ต) โˆˆ โ„‚) โ†’ (โ„œโ€˜(๐ด ยท (โˆ—โ€˜๐ต))) = (((โ„œโ€˜๐ด) ยท (โ„œโ€˜(โˆ—โ€˜๐ต))) โˆ’ ((โ„‘โ€˜๐ด) ยท (โ„‘โ€˜(โˆ—โ€˜๐ต)))))
31, 2sylan2 593 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (โ„œโ€˜(๐ด ยท (โˆ—โ€˜๐ต))) = (((โ„œโ€˜๐ด) ยท (โ„œโ€˜(โˆ—โ€˜๐ต))) โˆ’ ((โ„‘โ€˜๐ด) ยท (โ„‘โ€˜(โˆ—โ€˜๐ต)))))
4 recj 14934 . . . . 5 (๐ต โˆˆ โ„‚ โ†’ (โ„œโ€˜(โˆ—โ€˜๐ต)) = (โ„œโ€˜๐ต))
54adantl 482 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (โ„œโ€˜(โˆ—โ€˜๐ต)) = (โ„œโ€˜๐ต))
65oveq2d 7353 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((โ„œโ€˜๐ด) ยท (โ„œโ€˜(โˆ—โ€˜๐ต))) = ((โ„œโ€˜๐ด) ยท (โ„œโ€˜๐ต)))
7 imcj 14942 . . . . . 6 (๐ต โˆˆ โ„‚ โ†’ (โ„‘โ€˜(โˆ—โ€˜๐ต)) = -(โ„‘โ€˜๐ต))
87adantl 482 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (โ„‘โ€˜(โˆ—โ€˜๐ต)) = -(โ„‘โ€˜๐ต))
98oveq2d 7353 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((โ„‘โ€˜๐ด) ยท (โ„‘โ€˜(โˆ—โ€˜๐ต))) = ((โ„‘โ€˜๐ด) ยท -(โ„‘โ€˜๐ต)))
10 imcl 14921 . . . . . 6 (๐ด โˆˆ โ„‚ โ†’ (โ„‘โ€˜๐ด) โˆˆ โ„)
1110recnd 11104 . . . . 5 (๐ด โˆˆ โ„‚ โ†’ (โ„‘โ€˜๐ด) โˆˆ โ„‚)
12 imcl 14921 . . . . . 6 (๐ต โˆˆ โ„‚ โ†’ (โ„‘โ€˜๐ต) โˆˆ โ„)
1312recnd 11104 . . . . 5 (๐ต โˆˆ โ„‚ โ†’ (โ„‘โ€˜๐ต) โˆˆ โ„‚)
14 mulneg2 11513 . . . . 5 (((โ„‘โ€˜๐ด) โˆˆ โ„‚ โˆง (โ„‘โ€˜๐ต) โˆˆ โ„‚) โ†’ ((โ„‘โ€˜๐ด) ยท -(โ„‘โ€˜๐ต)) = -((โ„‘โ€˜๐ด) ยท (โ„‘โ€˜๐ต)))
1511, 13, 14syl2an 596 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((โ„‘โ€˜๐ด) ยท -(โ„‘โ€˜๐ต)) = -((โ„‘โ€˜๐ด) ยท (โ„‘โ€˜๐ต)))
169, 15eqtrd 2776 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((โ„‘โ€˜๐ด) ยท (โ„‘โ€˜(โˆ—โ€˜๐ต))) = -((โ„‘โ€˜๐ด) ยท (โ„‘โ€˜๐ต)))
176, 16oveq12d 7355 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (((โ„œโ€˜๐ด) ยท (โ„œโ€˜(โˆ—โ€˜๐ต))) โˆ’ ((โ„‘โ€˜๐ด) ยท (โ„‘โ€˜(โˆ—โ€˜๐ต)))) = (((โ„œโ€˜๐ด) ยท (โ„œโ€˜๐ต)) โˆ’ -((โ„‘โ€˜๐ด) ยท (โ„‘โ€˜๐ต))))
18 recl 14920 . . . . 5 (๐ด โˆˆ โ„‚ โ†’ (โ„œโ€˜๐ด) โˆˆ โ„)
1918recnd 11104 . . . 4 (๐ด โˆˆ โ„‚ โ†’ (โ„œโ€˜๐ด) โˆˆ โ„‚)
20 recl 14920 . . . . 5 (๐ต โˆˆ โ„‚ โ†’ (โ„œโ€˜๐ต) โˆˆ โ„)
2120recnd 11104 . . . 4 (๐ต โˆˆ โ„‚ โ†’ (โ„œโ€˜๐ต) โˆˆ โ„‚)
22 mulcl 11056 . . . 4 (((โ„œโ€˜๐ด) โˆˆ โ„‚ โˆง (โ„œโ€˜๐ต) โˆˆ โ„‚) โ†’ ((โ„œโ€˜๐ด) ยท (โ„œโ€˜๐ต)) โˆˆ โ„‚)
2319, 21, 22syl2an 596 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((โ„œโ€˜๐ด) ยท (โ„œโ€˜๐ต)) โˆˆ โ„‚)
24 mulcl 11056 . . . 4 (((โ„‘โ€˜๐ด) โˆˆ โ„‚ โˆง (โ„‘โ€˜๐ต) โˆˆ โ„‚) โ†’ ((โ„‘โ€˜๐ด) ยท (โ„‘โ€˜๐ต)) โˆˆ โ„‚)
2511, 13, 24syl2an 596 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((โ„‘โ€˜๐ด) ยท (โ„‘โ€˜๐ต)) โˆˆ โ„‚)
2623, 25subnegd 11440 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (((โ„œโ€˜๐ด) ยท (โ„œโ€˜๐ต)) โˆ’ -((โ„‘โ€˜๐ด) ยท (โ„‘โ€˜๐ต))) = (((โ„œโ€˜๐ด) ยท (โ„œโ€˜๐ต)) + ((โ„‘โ€˜๐ด) ยท (โ„‘โ€˜๐ต))))
273, 17, 263eqtrd 2780 1 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (โ„œโ€˜(๐ด ยท (โˆ—โ€˜๐ต))) = (((โ„œโ€˜๐ด) ยท (โ„œโ€˜๐ต)) + ((โ„‘โ€˜๐ด) ยท (โ„‘โ€˜๐ต))))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 396   = wceq 1540   โˆˆ wcel 2105  โ€˜cfv 6479  (class class class)co 7337  โ„‚cc 10970   + caddc 10975   ยท cmul 10977   โˆ’ cmin 11306  -cneg 11307  โˆ—ccj 14906  โ„œcre 14907  โ„‘cim 14908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-po 5532  df-so 5533  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-er 8569  df-en 8805  df-dom 8806  df-sdom 8807  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734  df-2 12137  df-cj 14909  df-re 14910  df-im 14911
This theorem is referenced by:  cjmulval  14955  ipcni  15000  ipcnd  15032
  Copyright terms: Public domain W3C validator