MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipcnval Structured version   Visualization version   GIF version

Theorem ipcnval 15162
Description: Standard inner product on complex numbers. (Contributed by NM, 29-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
ipcnval ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · (∗‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((ℑ‘𝐴) · (ℑ‘𝐵))))

Proof of Theorem ipcnval
StepHypRef Expression
1 cjcl 15124 . . 3 (𝐵 ∈ ℂ → (∗‘𝐵) ∈ ℂ)
2 remul 15148 . . 3 ((𝐴 ∈ ℂ ∧ (∗‘𝐵) ∈ ℂ) → (ℜ‘(𝐴 · (∗‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘(∗‘𝐵))) − ((ℑ‘𝐴) · (ℑ‘(∗‘𝐵)))))
31, 2sylan2 593 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · (∗‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘(∗‘𝐵))) − ((ℑ‘𝐴) · (ℑ‘(∗‘𝐵)))))
4 recj 15143 . . . . 5 (𝐵 ∈ ℂ → (ℜ‘(∗‘𝐵)) = (ℜ‘𝐵))
54adantl 481 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(∗‘𝐵)) = (ℜ‘𝐵))
65oveq2d 7421 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (ℜ‘(∗‘𝐵))) = ((ℜ‘𝐴) · (ℜ‘𝐵)))
7 imcj 15151 . . . . . 6 (𝐵 ∈ ℂ → (ℑ‘(∗‘𝐵)) = -(ℑ‘𝐵))
87adantl 481 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(∗‘𝐵)) = -(ℑ‘𝐵))
98oveq2d 7421 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) · (ℑ‘(∗‘𝐵))) = ((ℑ‘𝐴) · -(ℑ‘𝐵)))
10 imcl 15130 . . . . . 6 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
1110recnd 11263 . . . . 5 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
12 imcl 15130 . . . . . 6 (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℝ)
1312recnd 11263 . . . . 5 (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℂ)
14 mulneg2 11674 . . . . 5 (((ℑ‘𝐴) ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → ((ℑ‘𝐴) · -(ℑ‘𝐵)) = -((ℑ‘𝐴) · (ℑ‘𝐵)))
1511, 13, 14syl2an 596 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) · -(ℑ‘𝐵)) = -((ℑ‘𝐴) · (ℑ‘𝐵)))
169, 15eqtrd 2770 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) · (ℑ‘(∗‘𝐵))) = -((ℑ‘𝐴) · (ℑ‘𝐵)))
176, 16oveq12d 7423 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℜ‘(∗‘𝐵))) − ((ℑ‘𝐴) · (ℑ‘(∗‘𝐵)))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − -((ℑ‘𝐴) · (ℑ‘𝐵))))
18 recl 15129 . . . . 5 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
1918recnd 11263 . . . 4 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
20 recl 15129 . . . . 5 (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℝ)
2120recnd 11263 . . . 4 (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℂ)
22 mulcl 11213 . . . 4 (((ℜ‘𝐴) ∈ ℂ ∧ (ℜ‘𝐵) ∈ ℂ) → ((ℜ‘𝐴) · (ℜ‘𝐵)) ∈ ℂ)
2319, 21, 22syl2an 596 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (ℜ‘𝐵)) ∈ ℂ)
24 mulcl 11213 . . . 4 (((ℑ‘𝐴) ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → ((ℑ‘𝐴) · (ℑ‘𝐵)) ∈ ℂ)
2511, 13, 24syl2an 596 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) · (ℑ‘𝐵)) ∈ ℂ)
2623, 25subnegd 11601 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℜ‘𝐵)) − -((ℑ‘𝐴) · (ℑ‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((ℑ‘𝐴) · (ℑ‘𝐵))))
273, 17, 263eqtrd 2774 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · (∗‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((ℑ‘𝐴) · (ℑ‘𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cfv 6531  (class class class)co 7405  cc 11127   + caddc 11132   · cmul 11134  cmin 11466  -cneg 11467  ccj 15115  cre 15116  cim 15117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-cj 15118  df-re 15119  df-im 15120
This theorem is referenced by:  cjmulval  15164  ipcni  15209  ipcnd  15241
  Copyright terms: Public domain W3C validator