MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cjmulval Structured version   Visualization version   GIF version

Theorem cjmulval 15164
Description: A complex number times its conjugate. (Contributed by NM, 1-Feb-2007.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
cjmulval (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))

Proof of Theorem cjmulval
StepHypRef Expression
1 recl 15129 . . . . 5 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
21recnd 11263 . . . 4 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
32sqvald 14161 . . 3 (𝐴 ∈ ℂ → ((ℜ‘𝐴)↑2) = ((ℜ‘𝐴) · (ℜ‘𝐴)))
4 imcl 15130 . . . . 5 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
54recnd 11263 . . . 4 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
65sqvald 14161 . . 3 (𝐴 ∈ ℂ → ((ℑ‘𝐴)↑2) = ((ℑ‘𝐴) · (ℑ‘𝐴)))
73, 6oveq12d 7423 . 2 (𝐴 ∈ ℂ → (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)) = (((ℜ‘𝐴) · (ℜ‘𝐴)) + ((ℑ‘𝐴) · (ℑ‘𝐴))))
8 ipcnval 15162 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (ℜ‘(𝐴 · (∗‘𝐴))) = (((ℜ‘𝐴) · (ℜ‘𝐴)) + ((ℑ‘𝐴) · (ℑ‘𝐴))))
98anidms 566 . 2 (𝐴 ∈ ℂ → (ℜ‘(𝐴 · (∗‘𝐴))) = (((ℜ‘𝐴) · (ℜ‘𝐴)) + ((ℑ‘𝐴) · (ℑ‘𝐴))))
10 cjmulrcl 15163 . . 3 (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) ∈ ℝ)
11 rere 15141 . . 3 ((𝐴 · (∗‘𝐴)) ∈ ℝ → (ℜ‘(𝐴 · (∗‘𝐴))) = (𝐴 · (∗‘𝐴)))
1210, 11syl 17 . 2 (𝐴 ∈ ℂ → (ℜ‘(𝐴 · (∗‘𝐴))) = (𝐴 · (∗‘𝐴)))
137, 9, 123eqtr2rd 2777 1 (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cfv 6531  (class class class)co 7405  cc 11127  cr 11128   + caddc 11132   · cmul 11134  2c2 12295  cexp 14079  ccj 15115  cre 15116  cim 15117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120
This theorem is referenced by:  cjmulge0  15165  cjmulvali  15197  cjmulvald  15226  absvalsq2  15300  absval2  15303
  Copyright terms: Public domain W3C validator