| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subnegd | Structured version Visualization version GIF version | ||
| Description: Relationship between subtraction and negative. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| subnegd | ⊢ (𝜑 → (𝐴 − -𝐵) = (𝐴 + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | subneg 11471 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − -𝐵) = (𝐴 + 𝐵)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 − -𝐵) = (𝐴 + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 + caddc 11071 − cmin 11405 -cneg 11406 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-sub 11407 df-neg 11408 |
| This theorem is referenced by: possumd 11803 dfceil2 13801 addmodlteq 13911 ipcnval 15109 fallfacfwd 16002 cossub 16137 znunit 21473 cphsqrtcl2 25086 ulmshft 26299 ptolemy 26405 efeq1 26437 quad2 26749 dcubic2 26754 dcubic 26756 mcubic 26757 dquartlem1 26761 quart 26771 asinlem 26778 asinlem2 26779 sinasin 26799 asinsin 26802 atandmtan 26830 atantan 26833 lgamgulmlem2 26940 lgambdd 26947 lgamucov 26948 lgseisenlem2 27287 rpvmasum2 27423 chpdifbndlem1 27464 pntrsumo1 27476 pntrlog2bndlem4 27491 nvabs 30601 pythagreim 32669 constrreinvcl 33762 cos9thpinconstrlem1 33779 breprexplemc 34623 logdivsqrle 34641 irrdiff 37314 poimirlem29 37643 areacirc 37707 posbezout 42088 acongrep 42969 acongeq 42972 jm2.25 42988 jm2.26lem3 42990 sqrtcvallem4 43628 sqrtcval 43630 radcnvrat 44303 dvradcnv2 44336 binomcxplemnotnn0 44345 fperiodmul 45302 itgsincmulx 45972 fourierdlem103 46207 fourierdlem109 46213 fourierdlem111 46215 sqwvfoura 46226 etransclem46 46278 hoicvrrex 46554 sigarms 46854 fmtnorec3 47549 2pwp1prm 47590 eenglngeehlnmlem1 48726 itsclc0yqsol 48753 |
| Copyright terms: Public domain | W3C validator |