| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subnegd | Structured version Visualization version GIF version | ||
| Description: Relationship between subtraction and negative. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| subnegd | ⊢ (𝜑 → (𝐴 − -𝐵) = (𝐴 + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | subneg 11532 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − -𝐵) = (𝐴 + 𝐵)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 − -𝐵) = (𝐴 + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 (class class class)co 7405 ℂcc 11127 + caddc 11132 − cmin 11466 -cneg 11467 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-ltxr 11274 df-sub 11468 df-neg 11469 |
| This theorem is referenced by: possumd 11862 dfceil2 13856 addmodlteq 13964 ipcnval 15162 fallfacfwd 16052 cossub 16187 znunit 21524 cphsqrtcl2 25138 ulmshft 26351 ptolemy 26457 efeq1 26489 quad2 26801 dcubic2 26806 dcubic 26808 mcubic 26809 dquartlem1 26813 quart 26823 asinlem 26830 asinlem2 26831 sinasin 26851 asinsin 26854 atandmtan 26882 atantan 26885 lgamgulmlem2 26992 lgambdd 26999 lgamucov 27000 lgseisenlem2 27339 rpvmasum2 27475 chpdifbndlem1 27516 pntrsumo1 27528 pntrlog2bndlem4 27543 nvabs 30653 pythagreim 32723 constrreinvcl 33806 cos9thpinconstrlem1 33823 breprexplemc 34664 logdivsqrle 34682 irrdiff 37344 poimirlem29 37673 areacirc 37737 posbezout 42113 acongrep 43004 acongeq 43007 jm2.25 43023 jm2.26lem3 43025 sqrtcvallem4 43663 sqrtcval 43665 radcnvrat 44338 dvradcnv2 44371 binomcxplemnotnn0 44380 fperiodmul 45333 itgsincmulx 46003 fourierdlem103 46238 fourierdlem109 46244 fourierdlem111 46246 sqwvfoura 46257 etransclem46 46309 hoicvrrex 46585 sigarms 46885 fmtnorec3 47562 2pwp1prm 47603 eenglngeehlnmlem1 48717 itsclc0yqsol 48744 |
| Copyright terms: Public domain | W3C validator |