| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subnegd | Structured version Visualization version GIF version | ||
| Description: Relationship between subtraction and negative. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| subnegd | ⊢ (𝜑 → (𝐴 − -𝐵) = (𝐴 + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | subneg 11410 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − -𝐵) = (𝐴 + 𝐵)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 − -𝐵) = (𝐴 + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℂcc 11004 + caddc 11009 − cmin 11344 -cneg 11345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 df-sub 11346 df-neg 11347 |
| This theorem is referenced by: possumd 11742 dfceil2 13743 addmodlteq 13853 ipcnval 15050 fallfacfwd 15943 cossub 16078 znunit 21501 cphsqrtcl2 25114 ulmshft 26327 ptolemy 26433 efeq1 26465 quad2 26777 dcubic2 26782 dcubic 26784 mcubic 26785 dquartlem1 26789 quart 26799 asinlem 26806 asinlem2 26807 sinasin 26827 asinsin 26830 atandmtan 26858 atantan 26861 lgamgulmlem2 26968 lgambdd 26975 lgamucov 26976 lgseisenlem2 27315 rpvmasum2 27451 chpdifbndlem1 27492 pntrsumo1 27504 pntrlog2bndlem4 27519 nvabs 30650 pythagreim 32727 constrreinvcl 33783 cos9thpinconstrlem1 33800 breprexplemc 34643 logdivsqrle 34661 irrdiff 37366 poimirlem29 37695 areacirc 37759 posbezout 42139 acongrep 43019 acongeq 43022 jm2.25 43038 jm2.26lem3 43040 sqrtcvallem4 43678 sqrtcval 43680 radcnvrat 44353 dvradcnv2 44386 binomcxplemnotnn0 44395 fperiodmul 45351 itgsincmulx 46018 fourierdlem103 46253 fourierdlem109 46259 fourierdlem111 46261 sqwvfoura 46272 etransclem46 46324 hoicvrrex 46600 sigarms 46900 fmtnorec3 47585 2pwp1prm 47626 eenglngeehlnmlem1 48775 itsclc0yqsol 48802 |
| Copyright terms: Public domain | W3C validator |