| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subnegd | Structured version Visualization version GIF version | ||
| Description: Relationship between subtraction and negative. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| subnegd | ⊢ (𝜑 → (𝐴 − -𝐵) = (𝐴 + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | subneg 11525 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − -𝐵) = (𝐴 + 𝐵)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 − -𝐵) = (𝐴 + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 (class class class)co 7400 ℂcc 11120 + caddc 11125 − cmin 11459 -cneg 11460 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-po 5559 df-so 5560 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-er 8714 df-en 8955 df-dom 8956 df-sdom 8957 df-pnf 11264 df-mnf 11265 df-ltxr 11267 df-sub 11461 df-neg 11462 |
| This theorem is referenced by: possumd 11855 dfceil2 13846 addmodlteq 13954 ipcnval 15151 fallfacfwd 16041 cossub 16174 znunit 21511 cphsqrtcl2 25125 ulmshft 26338 ptolemy 26443 efeq1 26475 quad2 26787 dcubic2 26792 dcubic 26794 mcubic 26795 dquartlem1 26799 quart 26809 asinlem 26816 asinlem2 26817 sinasin 26837 asinsin 26840 atandmtan 26868 atantan 26871 lgamgulmlem2 26978 lgambdd 26985 lgamucov 26986 lgseisenlem2 27325 rpvmasum2 27461 chpdifbndlem1 27502 pntrsumo1 27514 pntrlog2bndlem4 27529 nvabs 30587 pythagreim 32659 constrreinvcl 33741 breprexplemc 34593 logdivsqrle 34611 irrdiff 37273 poimirlem29 37602 areacirc 37666 posbezout 42042 acongrep 42936 acongeq 42939 jm2.25 42955 jm2.26lem3 42957 sqrtcvallem4 43595 sqrtcval 43597 radcnvrat 44271 dvradcnv2 44304 binomcxplemnotnn0 44313 fperiodmul 45267 itgsincmulx 45939 fourierdlem103 46174 fourierdlem109 46180 fourierdlem111 46182 sqwvfoura 46193 etransclem46 46245 hoicvrrex 46521 sigarms 46821 fmtnorec3 47488 2pwp1prm 47529 eenglngeehlnmlem1 48611 itsclc0yqsol 48638 |
| Copyright terms: Public domain | W3C validator |