MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subnegd Structured version   Visualization version   GIF version

Theorem subnegd 11007
Description: Relationship between subtraction and negative. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
pncand.2 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
subnegd (𝜑 → (𝐴 − -𝐵) = (𝐴 + 𝐵))

Proof of Theorem subnegd
StepHypRef Expression
1 negidd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 pncand.2 . 2 (𝜑𝐵 ∈ ℂ)
3 subneg 10938 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − -𝐵) = (𝐴 + 𝐵))
41, 2, 3syl2anc 586 1 (𝜑 → (𝐴 − -𝐵) = (𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2113  (class class class)co 7159  cc 10538   + caddc 10543  cmin 10873  -cneg 10874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-po 5477  df-so 5478  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-ltxr 10683  df-sub 10875  df-neg 10876
This theorem is referenced by:  possumd  11268  dfceil2  13212  addmodlteq  13317  ipcnval  14505  fallfacfwd  15393  cossub  15525  znunit  20713  cphsqrtcl2  23793  ulmshft  24981  ptolemy  25085  efeq1  25116  quad2  25420  dcubic2  25425  dcubic  25427  mcubic  25428  dquartlem1  25432  quart  25442  asinlem  25449  asinlem2  25450  sinasin  25470  asinsin  25473  atandmtan  25501  atantan  25504  lgamgulmlem2  25610  lgambdd  25617  lgamucov  25618  lgseisenlem2  25955  rpvmasum2  26091  chpdifbndlem1  26132  pntrsumo1  26144  pntrlog2bndlem4  26159  nvabs  28452  breprexplemc  31907  logdivsqrle  31925  poimirlem29  34925  areacirc  34991  acongrep  39583  acongeq  39586  jm2.25  39602  jm2.26lem3  39604  radcnvrat  40652  dvradcnv2  40685  binomcxplemnotnn0  40694  fperiodmul  41577  itgsincmulx  42265  fourierdlem103  42501  fourierdlem109  42507  fourierdlem111  42509  sqwvfoura  42520  etransclem46  42572  hoicvrrex  42845  sigarms  43120  fmtnorec3  43717  2pwp1prm  43758  eenglngeehlnmlem1  44731  itsclc0yqsol  44758
  Copyright terms: Public domain W3C validator