Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subnegd | Structured version Visualization version GIF version |
Description: Relationship between subtraction and negative. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
subnegd | ⊢ (𝜑 → (𝐴 − -𝐵) = (𝐴 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | subneg 11200 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − -𝐵) = (𝐴 + 𝐵)) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → (𝐴 − -𝐵) = (𝐴 + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 + caddc 10805 − cmin 11135 -cneg 11136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-sub 11137 df-neg 11138 |
This theorem is referenced by: possumd 11530 dfceil2 13487 addmodlteq 13594 ipcnval 14782 fallfacfwd 15674 cossub 15806 znunit 20683 cphsqrtcl2 24255 ulmshft 25454 ptolemy 25558 efeq1 25589 quad2 25894 dcubic2 25899 dcubic 25901 mcubic 25902 dquartlem1 25906 quart 25916 asinlem 25923 asinlem2 25924 sinasin 25944 asinsin 25947 atandmtan 25975 atantan 25978 lgamgulmlem2 26084 lgambdd 26091 lgamucov 26092 lgseisenlem2 26429 rpvmasum2 26565 chpdifbndlem1 26606 pntrsumo1 26618 pntrlog2bndlem4 26633 nvabs 28935 breprexplemc 32512 logdivsqrle 32530 irrdiff 35424 poimirlem29 35733 areacirc 35797 acongrep 40718 acongeq 40721 jm2.25 40737 jm2.26lem3 40739 sqrtcvallem4 41136 sqrtcval 41138 radcnvrat 41821 dvradcnv2 41854 binomcxplemnotnn0 41863 fperiodmul 42733 itgsincmulx 43405 fourierdlem103 43640 fourierdlem109 43646 fourierdlem111 43648 sqwvfoura 43659 etransclem46 43711 hoicvrrex 43984 sigarms 44259 fmtnorec3 44888 2pwp1prm 44929 eenglngeehlnmlem1 45971 itsclc0yqsol 45998 |
Copyright terms: Public domain | W3C validator |