MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subnegd Structured version   Visualization version   GIF version

Theorem subnegd 11490
Description: Relationship between subtraction and negative. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
pncand.2 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
subnegd (𝜑 → (𝐴 − -𝐵) = (𝐴 + 𝐵))

Proof of Theorem subnegd
StepHypRef Expression
1 negidd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 pncand.2 . 2 (𝜑𝐵 ∈ ℂ)
3 subneg 11421 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − -𝐵) = (𝐴 + 𝐵))
41, 2, 3syl2anc 584 1 (𝜑 → (𝐴 − -𝐵) = (𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  (class class class)co 7355  cc 11015   + caddc 11020  cmin 11355  -cneg 11356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-ltxr 11162  df-sub 11357  df-neg 11358
This theorem is referenced by:  possumd  11753  dfceil2  13750  addmodlteq  13860  ipcnval  15057  fallfacfwd  15950  cossub  16085  znunit  21509  cphsqrtcl2  25133  ulmshft  26346  ptolemy  26452  efeq1  26484  quad2  26796  dcubic2  26801  dcubic  26803  mcubic  26804  dquartlem1  26808  quart  26818  asinlem  26825  asinlem2  26826  sinasin  26846  asinsin  26849  atandmtan  26877  atantan  26880  lgamgulmlem2  26987  lgambdd  26994  lgamucov  26995  lgseisenlem2  27334  rpvmasum2  27470  chpdifbndlem1  27511  pntrsumo1  27523  pntrlog2bndlem4  27538  nvabs  30673  pythagreim  32753  constrreinvcl  33857  cos9thpinconstrlem1  33874  breprexplemc  34717  logdivsqrle  34735  irrdiff  37443  poimirlem29  37762  areacirc  37826  posbezout  42266  acongrep  43137  acongeq  43140  jm2.25  43156  jm2.26lem3  43158  sqrtcvallem4  43796  sqrtcval  43798  radcnvrat  44471  dvradcnv2  44504  binomcxplemnotnn0  44513  fperiodmul  45468  itgsincmulx  46134  fourierdlem103  46369  fourierdlem109  46375  fourierdlem111  46377  sqwvfoura  46388  etransclem46  46440  hoicvrrex  46716  sigarms  47016  fmtnorec3  47710  2pwp1prm  47751  eenglngeehlnmlem1  48899  itsclc0yqsol  48926
  Copyright terms: Public domain W3C validator