| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subnegd | Structured version Visualization version GIF version | ||
| Description: Relationship between subtraction and negative. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| subnegd | ⊢ (𝜑 → (𝐴 − -𝐵) = (𝐴 + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | subneg 11431 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − -𝐵) = (𝐴 + 𝐵)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 − -𝐵) = (𝐴 + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7353 ℂcc 11026 + caddc 11031 − cmin 11365 -cneg 11366 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-ltxr 11173 df-sub 11367 df-neg 11368 |
| This theorem is referenced by: possumd 11763 dfceil2 13761 addmodlteq 13871 ipcnval 15068 fallfacfwd 15961 cossub 16096 znunit 21488 cphsqrtcl2 25102 ulmshft 26315 ptolemy 26421 efeq1 26453 quad2 26765 dcubic2 26770 dcubic 26772 mcubic 26773 dquartlem1 26777 quart 26787 asinlem 26794 asinlem2 26795 sinasin 26815 asinsin 26818 atandmtan 26846 atantan 26849 lgamgulmlem2 26956 lgambdd 26963 lgamucov 26964 lgseisenlem2 27303 rpvmasum2 27439 chpdifbndlem1 27480 pntrsumo1 27492 pntrlog2bndlem4 27507 nvabs 30634 pythagreim 32702 constrreinvcl 33741 cos9thpinconstrlem1 33758 breprexplemc 34602 logdivsqrle 34620 irrdiff 37302 poimirlem29 37631 areacirc 37695 posbezout 42076 acongrep 42956 acongeq 42959 jm2.25 42975 jm2.26lem3 42977 sqrtcvallem4 43615 sqrtcval 43617 radcnvrat 44290 dvradcnv2 44323 binomcxplemnotnn0 44332 fperiodmul 45289 itgsincmulx 45959 fourierdlem103 46194 fourierdlem109 46200 fourierdlem111 46202 sqwvfoura 46213 etransclem46 46265 hoicvrrex 46541 sigarms 46841 fmtnorec3 47536 2pwp1prm 47577 eenglngeehlnmlem1 48726 itsclc0yqsol 48753 |
| Copyright terms: Public domain | W3C validator |