MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recj Structured version   Visualization version   GIF version

Theorem recj 14911
Description: Real part of a complex conjugate. (Contributed by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
recj (𝐴 ∈ ℂ → (ℜ‘(∗‘𝐴)) = (ℜ‘𝐴))

Proof of Theorem recj
StepHypRef Expression
1 recl 14897 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
21recnd 11082 . . . . 5 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
3 ax-icn 11009 . . . . . 6 i ∈ ℂ
4 imcl 14898 . . . . . . 7 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
54recnd 11082 . . . . . 6 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
6 mulcl 11034 . . . . . 6 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
73, 5, 6sylancr 587 . . . . 5 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ)
82, 7negsubd 11417 . . . 4 (𝐴 ∈ ℂ → ((ℜ‘𝐴) + -(i · (ℑ‘𝐴))) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
9 mulneg2 11491 . . . . . 6 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · -(ℑ‘𝐴)) = -(i · (ℑ‘𝐴)))
103, 5, 9sylancr 587 . . . . 5 (𝐴 ∈ ℂ → (i · -(ℑ‘𝐴)) = -(i · (ℑ‘𝐴)))
1110oveq2d 7332 . . . 4 (𝐴 ∈ ℂ → ((ℜ‘𝐴) + (i · -(ℑ‘𝐴))) = ((ℜ‘𝐴) + -(i · (ℑ‘𝐴))))
12 remim 14904 . . . 4 (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
138, 11, 123eqtr4rd 2787 . . 3 (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) + (i · -(ℑ‘𝐴))))
1413fveq2d 6815 . 2 (𝐴 ∈ ℂ → (ℜ‘(∗‘𝐴)) = (ℜ‘((ℜ‘𝐴) + (i · -(ℑ‘𝐴)))))
154renegcld 11481 . . 3 (𝐴 ∈ ℂ → -(ℑ‘𝐴) ∈ ℝ)
16 crre 14901 . . 3 (((ℜ‘𝐴) ∈ ℝ ∧ -(ℑ‘𝐴) ∈ ℝ) → (ℜ‘((ℜ‘𝐴) + (i · -(ℑ‘𝐴)))) = (ℜ‘𝐴))
171, 15, 16syl2anc 584 . 2 (𝐴 ∈ ℂ → (ℜ‘((ℜ‘𝐴) + (i · -(ℑ‘𝐴)))) = (ℜ‘𝐴))
1814, 17eqtrd 2776 1 (𝐴 ∈ ℂ → (ℜ‘(∗‘𝐴)) = (ℜ‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  cfv 6465  (class class class)co 7316  cc 10948  cr 10949  ici 10952   + caddc 10953   · cmul 10955  cmin 11284  -cneg 11285  ccj 14883  cre 14884  cim 14885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-resscn 11007  ax-1cn 11008  ax-icn 11009  ax-addcl 11010  ax-addrcl 11011  ax-mulcl 11012  ax-mulrcl 11013  ax-mulcom 11014  ax-addass 11015  ax-mulass 11016  ax-distr 11017  ax-i2m1 11018  ax-1ne0 11019  ax-1rid 11020  ax-rnegex 11021  ax-rrecex 11022  ax-cnre 11023  ax-pre-lttri 11024  ax-pre-lttrn 11025  ax-pre-ltadd 11026  ax-pre-mulgt0 11027
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-br 5087  df-opab 5149  df-mpt 5170  df-id 5506  df-po 5520  df-so 5521  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7273  df-ov 7319  df-oprab 7320  df-mpo 7321  df-er 8547  df-en 8783  df-dom 8784  df-sdom 8785  df-pnf 11090  df-mnf 11091  df-xr 11092  df-ltxr 11093  df-le 11094  df-sub 11286  df-neg 11287  df-div 11712  df-2 12115  df-cj 14886  df-re 14887  df-im 14888
This theorem is referenced by:  cjcj  14927  ipcnval  14930  recji  14962  recjd  14991
  Copyright terms: Public domain W3C validator