Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. 2
⊢
(Base‘(oppr‘𝑅)) =
(Base‘(oppr‘𝑅)) |
2 | | eqid 2738 |
. 2
⊢
(1r‘(oppr‘𝑅)) =
(1r‘(oppr‘𝑅)) |
3 | | eqid 2738 |
. 2
⊢
(1r‘(oppr‘𝑆)) =
(1r‘(oppr‘𝑆)) |
4 | | eqid 2738 |
. 2
⊢
(.r‘(oppr‘𝑅)) =
(.r‘(oppr‘𝑅)) |
5 | | eqid 2738 |
. 2
⊢
(.r‘(oppr‘𝑆)) =
(.r‘(oppr‘𝑆)) |
6 | | rhmrcl1 19963 |
. . 3
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring) |
7 | | eqid 2738 |
. . . 4
⊢
(oppr‘𝑅) = (oppr‘𝑅) |
8 | 7 | opprringb 19874 |
. . 3
⊢ (𝑅 ∈ Ring ↔
(oppr‘𝑅) ∈ Ring) |
9 | 6, 8 | sylib 217 |
. 2
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (oppr‘𝑅) ∈ Ring) |
10 | | rhmrcl2 19964 |
. . 3
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) |
11 | | eqid 2738 |
. . . 4
⊢
(oppr‘𝑆) = (oppr‘𝑆) |
12 | 11 | opprringb 19874 |
. . 3
⊢ (𝑆 ∈ Ring ↔
(oppr‘𝑆) ∈ Ring) |
13 | 10, 12 | sylib 217 |
. 2
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (oppr‘𝑆) ∈ Ring) |
14 | | eqid 2738 |
. . . . 5
⊢
(1r‘𝑅) = (1r‘𝑅) |
15 | 7, 14 | oppr1 19876 |
. . . 4
⊢
(1r‘𝑅) =
(1r‘(oppr‘𝑅)) |
16 | 15 | eqcomi 2747 |
. . 3
⊢
(1r‘(oppr‘𝑅)) = (1r‘𝑅) |
17 | | eqid 2738 |
. . . . 5
⊢
(1r‘𝑆) = (1r‘𝑆) |
18 | 11, 17 | oppr1 19876 |
. . . 4
⊢
(1r‘𝑆) =
(1r‘(oppr‘𝑆)) |
19 | 18 | eqcomi 2747 |
. . 3
⊢
(1r‘(oppr‘𝑆)) = (1r‘𝑆) |
20 | 16, 19 | rhm1 19974 |
. 2
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r‘(oppr‘𝑅))) =
(1r‘(oppr‘𝑆))) |
21 | | simpl 483 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈
(Base‘(oppr‘𝑅)) ∧ 𝑦 ∈
(Base‘(oppr‘𝑅)))) → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
22 | | simprr 770 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈
(Base‘(oppr‘𝑅)) ∧ 𝑦 ∈
(Base‘(oppr‘𝑅)))) → 𝑦 ∈
(Base‘(oppr‘𝑅))) |
23 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
24 | 7, 23 | opprbas 19869 |
. . . . 5
⊢
(Base‘𝑅) =
(Base‘(oppr‘𝑅)) |
25 | 22, 24 | eleqtrrdi 2850 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈
(Base‘(oppr‘𝑅)) ∧ 𝑦 ∈
(Base‘(oppr‘𝑅)))) → 𝑦 ∈ (Base‘𝑅)) |
26 | | simprl 768 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈
(Base‘(oppr‘𝑅)) ∧ 𝑦 ∈
(Base‘(oppr‘𝑅)))) → 𝑥 ∈
(Base‘(oppr‘𝑅))) |
27 | 26, 24 | eleqtrrdi 2850 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈
(Base‘(oppr‘𝑅)) ∧ 𝑦 ∈
(Base‘(oppr‘𝑅)))) → 𝑥 ∈ (Base‘𝑅)) |
28 | | eqid 2738 |
. . . . 5
⊢
(.r‘𝑅) = (.r‘𝑅) |
29 | | eqid 2738 |
. . . . 5
⊢
(.r‘𝑆) = (.r‘𝑆) |
30 | 23, 28, 29 | rhmmul 19971 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐹‘(𝑦(.r‘𝑅)𝑥)) = ((𝐹‘𝑦)(.r‘𝑆)(𝐹‘𝑥))) |
31 | 21, 25, 27, 30 | syl3anc 1370 |
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈
(Base‘(oppr‘𝑅)) ∧ 𝑦 ∈
(Base‘(oppr‘𝑅)))) → (𝐹‘(𝑦(.r‘𝑅)𝑥)) = ((𝐹‘𝑦)(.r‘𝑆)(𝐹‘𝑥))) |
32 | 23, 28, 7, 4 | opprmul 19865 |
. . . 4
⊢ (𝑥(.r‘(oppr‘𝑅))𝑦) = (𝑦(.r‘𝑅)𝑥) |
33 | 32 | fveq2i 6777 |
. . 3
⊢ (𝐹‘(𝑥(.r‘(oppr‘𝑅))𝑦)) = (𝐹‘(𝑦(.r‘𝑅)𝑥)) |
34 | | eqid 2738 |
. . . 4
⊢
(Base‘𝑆) =
(Base‘𝑆) |
35 | 34, 29, 11, 5 | opprmul 19865 |
. . 3
⊢ ((𝐹‘𝑥)(.r‘(oppr‘𝑆))(𝐹‘𝑦)) = ((𝐹‘𝑦)(.r‘𝑆)(𝐹‘𝑥)) |
36 | 31, 33, 35 | 3eqtr4g 2803 |
. 2
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈
(Base‘(oppr‘𝑅)) ∧ 𝑦 ∈
(Base‘(oppr‘𝑅)))) → (𝐹‘(𝑥(.r‘(oppr‘𝑅))𝑦)) = ((𝐹‘𝑥)(.r‘(oppr‘𝑆))(𝐹‘𝑦))) |
37 | | ringgrp 19788 |
. . . . 5
⊢
((oppr‘𝑅) ∈ Ring →
(oppr‘𝑅) ∈ Grp) |
38 | 9, 37 | syl 17 |
. . . 4
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (oppr‘𝑅) ∈ Grp) |
39 | | ringgrp 19788 |
. . . . 5
⊢
((oppr‘𝑆) ∈ Ring →
(oppr‘𝑆) ∈ Grp) |
40 | 13, 39 | syl 17 |
. . . 4
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (oppr‘𝑆) ∈ Grp) |
41 | 23, 34 | rhmf 19970 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆)) |
42 | | rhmghm 19969 |
. . . . . . . . 9
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
43 | 42 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
44 | | simplr 766 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅)) |
45 | | simpr 485 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑦 ∈ (Base‘𝑅)) |
46 | | eqid 2738 |
. . . . . . . . 9
⊢
(+g‘𝑅) = (+g‘𝑅) |
47 | | eqid 2738 |
. . . . . . . . 9
⊢
(+g‘𝑆) = (+g‘𝑆) |
48 | 23, 46, 47 | ghmlin 18839 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦))) |
49 | 43, 44, 45, 48 | syl3anc 1370 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦))) |
50 | 49 | ralrimiva 3103 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅)) → ∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦))) |
51 | 50 | ralrimiva 3103 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦))) |
52 | 41, 51 | jca 512 |
. . . 4
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦)))) |
53 | 38, 40, 52 | jca31 515 |
. . 3
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) →
(((oppr‘𝑅) ∈ Grp ∧
(oppr‘𝑆) ∈ Grp) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦))))) |
54 | 11, 34 | opprbas 19869 |
. . . 4
⊢
(Base‘𝑆) =
(Base‘(oppr‘𝑆)) |
55 | 7, 46 | oppradd 19871 |
. . . 4
⊢
(+g‘𝑅) =
(+g‘(oppr‘𝑅)) |
56 | 11, 47 | oppradd 19871 |
. . . 4
⊢
(+g‘𝑆) =
(+g‘(oppr‘𝑆)) |
57 | 24, 54, 55, 56 | isghm 18834 |
. . 3
⊢ (𝐹 ∈
((oppr‘𝑅) GrpHom (oppr‘𝑆)) ↔
(((oppr‘𝑅) ∈ Grp ∧
(oppr‘𝑆) ∈ Grp) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦))))) |
58 | 53, 57 | sylibr 233 |
. 2
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((oppr‘𝑅) GrpHom
(oppr‘𝑆))) |
59 | 1, 2, 3, 4, 5, 9, 13, 20, 36, 58 | isrhm2d 19972 |
1
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((oppr‘𝑅) RingHom
(oppr‘𝑆))) |