Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmopp Structured version   Visualization version   GIF version

Theorem rhmopp 30894
Description: A ring homomorphism is also a ring homomorphism for the opposite rings. (Contributed by Thierry Arnoux, 27-Oct-2017.)
Assertion
Ref Expression
rhmopp (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((oppr𝑅) RingHom (oppr𝑆)))

Proof of Theorem rhmopp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2823 . 2 (Base‘(oppr𝑅)) = (Base‘(oppr𝑅))
2 eqid 2823 . 2 (1r‘(oppr𝑅)) = (1r‘(oppr𝑅))
3 eqid 2823 . 2 (1r‘(oppr𝑆)) = (1r‘(oppr𝑆))
4 eqid 2823 . 2 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
5 eqid 2823 . 2 (.r‘(oppr𝑆)) = (.r‘(oppr𝑆))
6 rhmrcl1 19473 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
7 eqid 2823 . . . 4 (oppr𝑅) = (oppr𝑅)
87opprringb 19384 . . 3 (𝑅 ∈ Ring ↔ (oppr𝑅) ∈ Ring)
96, 8sylib 220 . 2 (𝐹 ∈ (𝑅 RingHom 𝑆) → (oppr𝑅) ∈ Ring)
10 rhmrcl2 19474 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
11 eqid 2823 . . . 4 (oppr𝑆) = (oppr𝑆)
1211opprringb 19384 . . 3 (𝑆 ∈ Ring ↔ (oppr𝑆) ∈ Ring)
1310, 12sylib 220 . 2 (𝐹 ∈ (𝑅 RingHom 𝑆) → (oppr𝑆) ∈ Ring)
14 eqid 2823 . . . . 5 (1r𝑅) = (1r𝑅)
157, 14oppr1 19386 . . . 4 (1r𝑅) = (1r‘(oppr𝑅))
1615eqcomi 2832 . . 3 (1r‘(oppr𝑅)) = (1r𝑅)
17 eqid 2823 . . . . 5 (1r𝑆) = (1r𝑆)
1811, 17oppr1 19386 . . . 4 (1r𝑆) = (1r‘(oppr𝑆))
1918eqcomi 2832 . . 3 (1r‘(oppr𝑆)) = (1r𝑆)
2016, 19rhm1 19484 . 2 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r‘(oppr𝑅))) = (1r‘(oppr𝑆)))
21 simpl 485 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → 𝐹 ∈ (𝑅 RingHom 𝑆))
22 simprr 771 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → 𝑦 ∈ (Base‘(oppr𝑅)))
23 eqid 2823 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
247, 23opprbas 19381 . . . . 5 (Base‘𝑅) = (Base‘(oppr𝑅))
2522, 24eleqtrrdi 2926 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → 𝑦 ∈ (Base‘𝑅))
26 simprl 769 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → 𝑥 ∈ (Base‘(oppr𝑅)))
2726, 24eleqtrrdi 2926 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → 𝑥 ∈ (Base‘𝑅))
28 eqid 2823 . . . . 5 (.r𝑅) = (.r𝑅)
29 eqid 2823 . . . . 5 (.r𝑆) = (.r𝑆)
3023, 28, 29rhmmul 19481 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐹‘(𝑦(.r𝑅)𝑥)) = ((𝐹𝑦)(.r𝑆)(𝐹𝑥)))
3121, 25, 27, 30syl3anc 1367 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → (𝐹‘(𝑦(.r𝑅)𝑥)) = ((𝐹𝑦)(.r𝑆)(𝐹𝑥)))
3223, 28, 7, 4opprmul 19378 . . . 4 (𝑥(.r‘(oppr𝑅))𝑦) = (𝑦(.r𝑅)𝑥)
3332fveq2i 6675 . . 3 (𝐹‘(𝑥(.r‘(oppr𝑅))𝑦)) = (𝐹‘(𝑦(.r𝑅)𝑥))
34 eqid 2823 . . . 4 (Base‘𝑆) = (Base‘𝑆)
3534, 29, 11, 5opprmul 19378 . . 3 ((𝐹𝑥)(.r‘(oppr𝑆))(𝐹𝑦)) = ((𝐹𝑦)(.r𝑆)(𝐹𝑥))
3631, 33, 353eqtr4g 2883 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → (𝐹‘(𝑥(.r‘(oppr𝑅))𝑦)) = ((𝐹𝑥)(.r‘(oppr𝑆))(𝐹𝑦)))
37 ringgrp 19304 . . . . 5 ((oppr𝑅) ∈ Ring → (oppr𝑅) ∈ Grp)
389, 37syl 17 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → (oppr𝑅) ∈ Grp)
39 ringgrp 19304 . . . . 5 ((oppr𝑆) ∈ Ring → (oppr𝑆) ∈ Grp)
4013, 39syl 17 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → (oppr𝑆) ∈ Grp)
4123, 34rhmf 19480 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
42 rhmghm 19479 . . . . . . . . 9 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
4342ad2antrr 724 . . . . . . . 8 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
44 simplr 767 . . . . . . . 8 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
45 simpr 487 . . . . . . . 8 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑦 ∈ (Base‘𝑅))
46 eqid 2823 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
47 eqid 2823 . . . . . . . . 9 (+g𝑆) = (+g𝑆)
4823, 46, 47ghmlin 18365 . . . . . . . 8 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))
4943, 44, 45, 48syl3anc 1367 . . . . . . 7 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))
5049ralrimiva 3184 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅)) → ∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))
5150ralrimiva 3184 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))
5241, 51jca 514 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))))
5338, 40, 52jca31 517 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → (((oppr𝑅) ∈ Grp ∧ (oppr𝑆) ∈ Grp) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))))
5411, 34opprbas 19381 . . . 4 (Base‘𝑆) = (Base‘(oppr𝑆))
557, 46oppradd 19382 . . . 4 (+g𝑅) = (+g‘(oppr𝑅))
5611, 47oppradd 19382 . . . 4 (+g𝑆) = (+g‘(oppr𝑆))
5724, 54, 55, 56isghm 18360 . . 3 (𝐹 ∈ ((oppr𝑅) GrpHom (oppr𝑆)) ↔ (((oppr𝑅) ∈ Grp ∧ (oppr𝑆) ∈ Grp) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))))
5853, 57sylibr 236 . 2 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((oppr𝑅) GrpHom (oppr𝑆)))
591, 2, 3, 4, 5, 9, 13, 20, 36, 58isrhm2d 19482 1 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((oppr𝑅) RingHom (oppr𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3140  wf 6353  cfv 6357  (class class class)co 7158  Basecbs 16485  +gcplusg 16567  .rcmulr 16568  Grpcgrp 18105   GrpHom cghm 18357  1rcur 19253  Ringcrg 19299  opprcoppr 19374   RingHom crh 19466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-tpos 7894  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-plusg 16580  df-mulr 16581  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-grp 18108  df-ghm 18358  df-mgp 19242  df-ur 19254  df-ring 19301  df-oppr 19375  df-rnghom 19469
This theorem is referenced by:  elrhmunit  30895
  Copyright terms: Public domain W3C validator