Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmopp Structured version   Visualization version   GIF version

Theorem rhmopp 31518
Description: A ring homomorphism is also a ring homomorphism for the opposite rings. (Contributed by Thierry Arnoux, 27-Oct-2017.)
Assertion
Ref Expression
rhmopp (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((oppr𝑅) RingHom (oppr𝑆)))

Proof of Theorem rhmopp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . 2 (Base‘(oppr𝑅)) = (Base‘(oppr𝑅))
2 eqid 2738 . 2 (1r‘(oppr𝑅)) = (1r‘(oppr𝑅))
3 eqid 2738 . 2 (1r‘(oppr𝑆)) = (1r‘(oppr𝑆))
4 eqid 2738 . 2 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
5 eqid 2738 . 2 (.r‘(oppr𝑆)) = (.r‘(oppr𝑆))
6 rhmrcl1 19963 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
7 eqid 2738 . . . 4 (oppr𝑅) = (oppr𝑅)
87opprringb 19874 . . 3 (𝑅 ∈ Ring ↔ (oppr𝑅) ∈ Ring)
96, 8sylib 217 . 2 (𝐹 ∈ (𝑅 RingHom 𝑆) → (oppr𝑅) ∈ Ring)
10 rhmrcl2 19964 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
11 eqid 2738 . . . 4 (oppr𝑆) = (oppr𝑆)
1211opprringb 19874 . . 3 (𝑆 ∈ Ring ↔ (oppr𝑆) ∈ Ring)
1310, 12sylib 217 . 2 (𝐹 ∈ (𝑅 RingHom 𝑆) → (oppr𝑆) ∈ Ring)
14 eqid 2738 . . . . 5 (1r𝑅) = (1r𝑅)
157, 14oppr1 19876 . . . 4 (1r𝑅) = (1r‘(oppr𝑅))
1615eqcomi 2747 . . 3 (1r‘(oppr𝑅)) = (1r𝑅)
17 eqid 2738 . . . . 5 (1r𝑆) = (1r𝑆)
1811, 17oppr1 19876 . . . 4 (1r𝑆) = (1r‘(oppr𝑆))
1918eqcomi 2747 . . 3 (1r‘(oppr𝑆)) = (1r𝑆)
2016, 19rhm1 19974 . 2 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r‘(oppr𝑅))) = (1r‘(oppr𝑆)))
21 simpl 483 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → 𝐹 ∈ (𝑅 RingHom 𝑆))
22 simprr 770 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → 𝑦 ∈ (Base‘(oppr𝑅)))
23 eqid 2738 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
247, 23opprbas 19869 . . . . 5 (Base‘𝑅) = (Base‘(oppr𝑅))
2522, 24eleqtrrdi 2850 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → 𝑦 ∈ (Base‘𝑅))
26 simprl 768 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → 𝑥 ∈ (Base‘(oppr𝑅)))
2726, 24eleqtrrdi 2850 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → 𝑥 ∈ (Base‘𝑅))
28 eqid 2738 . . . . 5 (.r𝑅) = (.r𝑅)
29 eqid 2738 . . . . 5 (.r𝑆) = (.r𝑆)
3023, 28, 29rhmmul 19971 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐹‘(𝑦(.r𝑅)𝑥)) = ((𝐹𝑦)(.r𝑆)(𝐹𝑥)))
3121, 25, 27, 30syl3anc 1370 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → (𝐹‘(𝑦(.r𝑅)𝑥)) = ((𝐹𝑦)(.r𝑆)(𝐹𝑥)))
3223, 28, 7, 4opprmul 19865 . . . 4 (𝑥(.r‘(oppr𝑅))𝑦) = (𝑦(.r𝑅)𝑥)
3332fveq2i 6777 . . 3 (𝐹‘(𝑥(.r‘(oppr𝑅))𝑦)) = (𝐹‘(𝑦(.r𝑅)𝑥))
34 eqid 2738 . . . 4 (Base‘𝑆) = (Base‘𝑆)
3534, 29, 11, 5opprmul 19865 . . 3 ((𝐹𝑥)(.r‘(oppr𝑆))(𝐹𝑦)) = ((𝐹𝑦)(.r𝑆)(𝐹𝑥))
3631, 33, 353eqtr4g 2803 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → (𝐹‘(𝑥(.r‘(oppr𝑅))𝑦)) = ((𝐹𝑥)(.r‘(oppr𝑆))(𝐹𝑦)))
37 ringgrp 19788 . . . . 5 ((oppr𝑅) ∈ Ring → (oppr𝑅) ∈ Grp)
389, 37syl 17 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → (oppr𝑅) ∈ Grp)
39 ringgrp 19788 . . . . 5 ((oppr𝑆) ∈ Ring → (oppr𝑆) ∈ Grp)
4013, 39syl 17 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → (oppr𝑆) ∈ Grp)
4123, 34rhmf 19970 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
42 rhmghm 19969 . . . . . . . . 9 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
4342ad2antrr 723 . . . . . . . 8 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
44 simplr 766 . . . . . . . 8 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
45 simpr 485 . . . . . . . 8 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑦 ∈ (Base‘𝑅))
46 eqid 2738 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
47 eqid 2738 . . . . . . . . 9 (+g𝑆) = (+g𝑆)
4823, 46, 47ghmlin 18839 . . . . . . . 8 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))
4943, 44, 45, 48syl3anc 1370 . . . . . . 7 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))
5049ralrimiva 3103 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅)) → ∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))
5150ralrimiva 3103 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))
5241, 51jca 512 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))))
5338, 40, 52jca31 515 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → (((oppr𝑅) ∈ Grp ∧ (oppr𝑆) ∈ Grp) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))))
5411, 34opprbas 19869 . . . 4 (Base‘𝑆) = (Base‘(oppr𝑆))
557, 46oppradd 19871 . . . 4 (+g𝑅) = (+g‘(oppr𝑅))
5611, 47oppradd 19871 . . . 4 (+g𝑆) = (+g‘(oppr𝑆))
5724, 54, 55, 56isghm 18834 . . 3 (𝐹 ∈ ((oppr𝑅) GrpHom (oppr𝑆)) ↔ (((oppr𝑅) ∈ Grp ∧ (oppr𝑆) ∈ Grp) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))))
5853, 57sylibr 233 . 2 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((oppr𝑅) GrpHom (oppr𝑆)))
591, 2, 3, 4, 5, 9, 13, 20, 36, 58isrhm2d 19972 1 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((oppr𝑅) RingHom (oppr𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  wf 6429  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  .rcmulr 16963  Grpcgrp 18577   GrpHom cghm 18831  1rcur 19737  Ringcrg 19783  opprcoppr 19861   RingHom crh 19956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-grp 18580  df-ghm 18832  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-rnghom 19959
This theorem is referenced by:  elrhmunit  31519
  Copyright terms: Public domain W3C validator