MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmopp Structured version   Visualization version   GIF version

Theorem rhmopp 20418
Description: A ring homomorphism is also a ring homomorphism for the opposite rings. (Contributed by Thierry Arnoux, 27-Oct-2017.)
Assertion
Ref Expression
rhmopp (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((oppr𝑅) RingHom (oppr𝑆)))

Proof of Theorem rhmopp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . 2 (Base‘(oppr𝑅)) = (Base‘(oppr𝑅))
2 eqid 2729 . 2 (1r‘(oppr𝑅)) = (1r‘(oppr𝑅))
3 eqid 2729 . 2 (1r‘(oppr𝑆)) = (1r‘(oppr𝑆))
4 eqid 2729 . 2 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
5 eqid 2729 . 2 (.r‘(oppr𝑆)) = (.r‘(oppr𝑆))
6 rhmrcl1 20385 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
7 eqid 2729 . . . 4 (oppr𝑅) = (oppr𝑅)
87opprringb 20257 . . 3 (𝑅 ∈ Ring ↔ (oppr𝑅) ∈ Ring)
96, 8sylib 218 . 2 (𝐹 ∈ (𝑅 RingHom 𝑆) → (oppr𝑅) ∈ Ring)
10 rhmrcl2 20386 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
11 eqid 2729 . . . 4 (oppr𝑆) = (oppr𝑆)
1211opprringb 20257 . . 3 (𝑆 ∈ Ring ↔ (oppr𝑆) ∈ Ring)
1310, 12sylib 218 . 2 (𝐹 ∈ (𝑅 RingHom 𝑆) → (oppr𝑆) ∈ Ring)
14 eqid 2729 . . . . 5 (1r𝑅) = (1r𝑅)
157, 14oppr1 20259 . . . 4 (1r𝑅) = (1r‘(oppr𝑅))
1615eqcomi 2738 . . 3 (1r‘(oppr𝑅)) = (1r𝑅)
17 eqid 2729 . . . . 5 (1r𝑆) = (1r𝑆)
1811, 17oppr1 20259 . . . 4 (1r𝑆) = (1r‘(oppr𝑆))
1918eqcomi 2738 . . 3 (1r‘(oppr𝑆)) = (1r𝑆)
2016, 19rhm1 20398 . 2 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r‘(oppr𝑅))) = (1r‘(oppr𝑆)))
21 simpl 482 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → 𝐹 ∈ (𝑅 RingHom 𝑆))
22 simprr 772 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → 𝑦 ∈ (Base‘(oppr𝑅)))
23 eqid 2729 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
247, 23opprbas 20252 . . . . 5 (Base‘𝑅) = (Base‘(oppr𝑅))
2522, 24eleqtrrdi 2839 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → 𝑦 ∈ (Base‘𝑅))
26 simprl 770 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → 𝑥 ∈ (Base‘(oppr𝑅)))
2726, 24eleqtrrdi 2839 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → 𝑥 ∈ (Base‘𝑅))
28 eqid 2729 . . . . 5 (.r𝑅) = (.r𝑅)
29 eqid 2729 . . . . 5 (.r𝑆) = (.r𝑆)
3023, 28, 29rhmmul 20395 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐹‘(𝑦(.r𝑅)𝑥)) = ((𝐹𝑦)(.r𝑆)(𝐹𝑥)))
3121, 25, 27, 30syl3anc 1373 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → (𝐹‘(𝑦(.r𝑅)𝑥)) = ((𝐹𝑦)(.r𝑆)(𝐹𝑥)))
3223, 28, 7, 4opprmul 20249 . . . 4 (𝑥(.r‘(oppr𝑅))𝑦) = (𝑦(.r𝑅)𝑥)
3332fveq2i 6861 . . 3 (𝐹‘(𝑥(.r‘(oppr𝑅))𝑦)) = (𝐹‘(𝑦(.r𝑅)𝑥))
34 eqid 2729 . . . 4 (Base‘𝑆) = (Base‘𝑆)
3534, 29, 11, 5opprmul 20249 . . 3 ((𝐹𝑥)(.r‘(oppr𝑆))(𝐹𝑦)) = ((𝐹𝑦)(.r𝑆)(𝐹𝑥))
3631, 33, 353eqtr4g 2789 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑥 ∈ (Base‘(oppr𝑅)) ∧ 𝑦 ∈ (Base‘(oppr𝑅)))) → (𝐹‘(𝑥(.r‘(oppr𝑅))𝑦)) = ((𝐹𝑥)(.r‘(oppr𝑆))(𝐹𝑦)))
37 ringgrp 20147 . . . . 5 ((oppr𝑅) ∈ Ring → (oppr𝑅) ∈ Grp)
389, 37syl 17 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → (oppr𝑅) ∈ Grp)
39 ringgrp 20147 . . . . 5 ((oppr𝑆) ∈ Ring → (oppr𝑆) ∈ Grp)
4013, 39syl 17 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → (oppr𝑆) ∈ Grp)
4123, 34rhmf 20394 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:(Base‘𝑅)⟶(Base‘𝑆))
42 rhmghm 20393 . . . . . . . . 9 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
4342ad2antrr 726 . . . . . . . 8 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
44 simplr 768 . . . . . . . 8 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
45 simpr 484 . . . . . . . 8 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → 𝑦 ∈ (Base‘𝑅))
46 eqid 2729 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
47 eqid 2729 . . . . . . . . 9 (+g𝑆) = (+g𝑆)
4823, 46, 47ghmlin 19153 . . . . . . . 8 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))
4943, 44, 45, 48syl3anc 1373 . . . . . . 7 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))
5049ralrimiva 3125 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑥 ∈ (Base‘𝑅)) → ∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))
5150ralrimiva 3125 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))
5241, 51jca 511 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))))
5338, 40, 52jca31 514 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → (((oppr𝑅) ∈ Grp ∧ (oppr𝑆) ∈ Grp) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))))
5411, 34opprbas 20252 . . . 4 (Base‘𝑆) = (Base‘(oppr𝑆))
557, 46oppradd 20253 . . . 4 (+g𝑅) = (+g‘(oppr𝑅))
5611, 47oppradd 20253 . . . 4 (+g𝑆) = (+g‘(oppr𝑆))
5724, 54, 55, 56isghm 19147 . . 3 (𝐹 ∈ ((oppr𝑅) GrpHom (oppr𝑆)) ↔ (((oppr𝑅) ∈ Grp ∧ (oppr𝑆) ∈ Grp) ∧ (𝐹:(Base‘𝑅)⟶(Base‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))))
5853, 57sylibr 234 . 2 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((oppr𝑅) GrpHom (oppr𝑆)))
591, 2, 3, 4, 5, 9, 13, 20, 36, 58isrhm2d 20396 1 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((oppr𝑅) RingHom (oppr𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wf 6507  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  Grpcgrp 18865   GrpHom cghm 19144  1rcur 20090  Ringcrg 20142  opprcoppr 20245   RingHom crh 20378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-grp 18868  df-minusg 18869  df-ghm 19145  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-oppr 20246  df-rhm 20381
This theorem is referenced by:  elrhmunit  20419
  Copyright terms: Public domain W3C validator