MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lenegd Structured version   Visualization version   GIF version

Theorem lenegd 11799
Description: Negative of both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
leidd.1 (𝜑𝐴 ∈ ℝ)
ltnegd.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
lenegd (𝜑 → (𝐴𝐵 ↔ -𝐵 ≤ -𝐴))

Proof of Theorem lenegd
StepHypRef Expression
1 leidd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltnegd.2 . 2 (𝜑𝐵 ∈ ℝ)
3 leneg 11723 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ -𝐵 ≤ -𝐴))
41, 2, 3syl2anc 582 1 (𝜑 → (𝐴𝐵 ↔ -𝐵 ≤ -𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2104   class class class wbr 5149  cr 11113  cle 11255  -cneg 11451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-pnf 11256  df-mnf 11257  df-xr 11258  df-ltxr 11259  df-le 11260  df-sub 11452  df-neg 11453
This theorem is referenced by:  monoord2  14005  o1lo12  15488  icco1  15490  iseraltlem3  15636  bitscmp  16385  evth2  24708  volsup2  25356  vitalilem2  25360  mbfposr  25403  mbfinf  25416  mbfi1fseqlem5  25471  itgle  25561  rolle  25741  dvfsumge  25773  dvfsumlem2  25778  dvfsum2  25785  emcllem7  26740  zetacvg  26753  fdvnegge  33910  climlec3  35005  gg-dvfsumlem2  35471  fzneg  42025  rexabslelem  44428  leneg2d  44458  leneg3d  44467  liminfreuzlem  44818  stoweidlem10  45026  stoweidlem42  45058  fourierdlem103  45225  smfinflem  45833
  Copyright terms: Public domain W3C validator