MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzneg Structured version   Visualization version   GIF version

Theorem uzneg 12762
Description: Contraposition law for upper integers. (Contributed by NM, 28-Nov-2005.)
Assertion
Ref Expression
uzneg (𝑁 ∈ (ℤ𝑀) → -𝑀 ∈ (ℤ‘-𝑁))

Proof of Theorem uzneg
StepHypRef Expression
1 eluzle 12755 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
2 eluzel2 12747 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
3 eluzelz 12752 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
4 zre 12482 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
5 zre 12482 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
6 leneg 11630 . . . . 5 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀𝑁 ↔ -𝑁 ≤ -𝑀))
74, 5, 6syl2an 596 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ -𝑁 ≤ -𝑀))
82, 3, 7syl2anc 584 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑀𝑁 ↔ -𝑁 ≤ -𝑀))
91, 8mpbid 232 . 2 (𝑁 ∈ (ℤ𝑀) → -𝑁 ≤ -𝑀)
10 znegcl 12517 . . . 4 (𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
11 znegcl 12517 . . . 4 (𝑀 ∈ ℤ → -𝑀 ∈ ℤ)
12 eluz 12756 . . . 4 ((-𝑁 ∈ ℤ ∧ -𝑀 ∈ ℤ) → (-𝑀 ∈ (ℤ‘-𝑁) ↔ -𝑁 ≤ -𝑀))
1310, 11, 12syl2an 596 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (-𝑀 ∈ (ℤ‘-𝑁) ↔ -𝑁 ≤ -𝑀))
143, 2, 13syl2anc 584 . 2 (𝑁 ∈ (ℤ𝑀) → (-𝑀 ∈ (ℤ‘-𝑁) ↔ -𝑁 ≤ -𝑀))
159, 14mpbird 257 1 (𝑁 ∈ (ℤ𝑀) → -𝑀 ∈ (ℤ‘-𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2113   class class class wbr 5095  cfv 6489  cr 11015  cle 11157  -cneg 11355  cz 12478  cuz 12742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-z 12479  df-uz 12743
This theorem is referenced by:  fsum2dsub  34631
  Copyright terms: Public domain W3C validator