| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodvsubcl | Structured version Visualization version GIF version | ||
| Description: Closure of vector subtraction. (hvsubcl 30983 analog.) (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodvsubcl.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodvsubcl.m | ⊢ − = (-g‘𝑊) |
| Ref | Expression |
|---|---|
| lmodvsubcl | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodgrp 20838 | . 2 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
| 2 | lmodvsubcl.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | lmodvsubcl.m | . . 3 ⊢ − = (-g‘𝑊) | |
| 4 | 2, 3 | grpsubcl 19012 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) ∈ 𝑉) |
| 5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) ∈ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ‘cfv 6542 (class class class)co 7414 Basecbs 17230 Grpcgrp 18925 -gcsg 18927 LModclmod 20831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7997 df-2nd 7998 df-0g 17462 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-grp 18928 df-minusg 18929 df-sbg 18930 df-lmod 20833 |
| This theorem is referenced by: lspsnsub 20978 lvecvscan 21086 ip2subdi 21629 ip2eq 21638 ipcau2 25223 nmparlem 25228 minveclem1 25413 minveclem2 25415 minveclem4 25421 minveclem6 25423 pjthlem1 25426 pjthlem2 25427 eqlkr 39041 lkrlsp 39044 mapdpglem1 41615 mapdpglem2 41616 mapdpglem5N 41620 mapdpglem8 41622 mapdpglem9 41623 mapdpglem13 41627 mapdpglem14 41628 mapdpglem27 41642 baerlem3lem2 41653 baerlem5alem2 41654 baerlem5blem2 41655 mapdheq4lem 41674 mapdh6lem1N 41676 mapdh6lem2N 41677 hdmap1l6lem1 41750 hdmap1l6lem2 41751 hdmap11 41791 hdmapinvlem4 41864 |
| Copyright terms: Public domain | W3C validator |