MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvsubcl Structured version   Visualization version   GIF version

Theorem lmodvsubcl 20517
Description: Closure of vector subtraction. (hvsubcl 30270 analog.) (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodvsubcl.v 𝑉 = (Base‘𝑊)
lmodvsubcl.m = (-g𝑊)
Assertion
Ref Expression
lmodvsubcl ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)

Proof of Theorem lmodvsubcl
StepHypRef Expression
1 lmodgrp 20478 . 2 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
2 lmodvsubcl.v . . 3 𝑉 = (Base‘𝑊)
3 lmodvsubcl.m . . 3 = (-g𝑊)
42, 3grpsubcl 18903 . 2 ((𝑊 ∈ Grp ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
51, 4syl3an1 1164 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088   = wceq 1542  wcel 2107  cfv 6544  (class class class)co 7409  Basecbs 17144  Grpcgrp 18819  -gcsg 18821  LModclmod 20471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-0g 17387  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-grp 18822  df-minusg 18823  df-sbg 18824  df-lmod 20473
This theorem is referenced by:  lspsnsub  20618  lvecvscan  20724  ip2subdi  21197  ip2eq  21206  ipcau2  24751  nmparlem  24756  minveclem1  24941  minveclem2  24943  minveclem4  24949  minveclem6  24951  pjthlem1  24954  pjthlem2  24955  eqlkr  37969  lkrlsp  37972  mapdpglem1  40543  mapdpglem2  40544  mapdpglem5N  40548  mapdpglem8  40550  mapdpglem9  40551  mapdpglem13  40555  mapdpglem14  40556  mapdpglem27  40570  baerlem3lem2  40581  baerlem5alem2  40582  baerlem5blem2  40583  mapdheq4lem  40602  mapdh6lem1N  40604  mapdh6lem2N  40605  hdmap1l6lem1  40678  hdmap1l6lem2  40679  hdmap11  40719  hdmapinvlem4  40792
  Copyright terms: Public domain W3C validator