MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvsubcl Structured version   Visualization version   GIF version

Theorem lmodvsubcl 20922
Description: Closure of vector subtraction. (hvsubcl 31046 analog.) (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodvsubcl.v 𝑉 = (Base‘𝑊)
lmodvsubcl.m = (-g𝑊)
Assertion
Ref Expression
lmodvsubcl ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)

Proof of Theorem lmodvsubcl
StepHypRef Expression
1 lmodgrp 20882 . 2 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
2 lmodvsubcl.v . . 3 𝑉 = (Base‘𝑊)
3 lmodvsubcl.m . . 3 = (-g𝑊)
42, 3grpsubcl 19051 . 2 ((𝑊 ∈ Grp ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
51, 4syl3an1 1162 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  Basecbs 17245  Grpcgrp 18964  -gcsg 18966  LModclmod 20875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-sbg 18969  df-lmod 20877
This theorem is referenced by:  lspsnsub  21023  lvecvscan  21131  ip2subdi  21680  ip2eq  21689  ipcau2  25282  nmparlem  25287  minveclem1  25472  minveclem2  25474  minveclem4  25480  minveclem6  25482  pjthlem1  25485  pjthlem2  25486  eqlkr  39081  lkrlsp  39084  mapdpglem1  41655  mapdpglem2  41656  mapdpglem5N  41660  mapdpglem8  41662  mapdpglem9  41663  mapdpglem13  41667  mapdpglem14  41668  mapdpglem27  41682  baerlem3lem2  41693  baerlem5alem2  41694  baerlem5blem2  41695  mapdheq4lem  41714  mapdh6lem1N  41716  mapdh6lem2N  41717  hdmap1l6lem1  41790  hdmap1l6lem2  41791  hdmap11  41831  hdmapinvlem4  41904
  Copyright terms: Public domain W3C validator