Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmodvsubcl | Structured version Visualization version GIF version |
Description: Closure of vector subtraction. (hvsubcl 29358 analog.) (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodvsubcl.v | ⊢ 𝑉 = (Base‘𝑊) |
lmodvsubcl.m | ⊢ − = (-g‘𝑊) |
Ref | Expression |
---|---|
lmodvsubcl | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodgrp 20111 | . 2 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
2 | lmodvsubcl.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | lmodvsubcl.m | . . 3 ⊢ − = (-g‘𝑊) | |
4 | 2, 3 | grpsubcl 18636 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) ∈ 𝑉) |
5 | 1, 4 | syl3an1 1161 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 Grpcgrp 18558 -gcsg 18560 LModclmod 20104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-1st 7817 df-2nd 7818 df-0g 17133 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-grp 18561 df-minusg 18562 df-sbg 18563 df-lmod 20106 |
This theorem is referenced by: lspsnsub 20250 lvecvscan 20354 ip2subdi 20830 ip2eq 20839 ipcau2 24379 nmparlem 24384 minveclem1 24569 minveclem2 24571 minveclem4 24577 minveclem6 24579 pjthlem1 24582 pjthlem2 24583 eqlkr 37092 lkrlsp 37095 mapdpglem1 39665 mapdpglem2 39666 mapdpglem5N 39670 mapdpglem8 39672 mapdpglem9 39673 mapdpglem13 39677 mapdpglem14 39678 mapdpglem27 39692 baerlem3lem2 39703 baerlem5alem2 39704 baerlem5blem2 39705 mapdheq4lem 39724 mapdh6lem1N 39726 mapdh6lem2N 39727 hdmap1l6lem1 39800 hdmap1l6lem2 39801 hdmap11 39841 hdmapinvlem4 39914 |
Copyright terms: Public domain | W3C validator |