![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodvsubcl | Structured version Visualization version GIF version |
Description: Closure of vector subtraction. (hvsubcl 31049 analog.) (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodvsubcl.v | ⊢ 𝑉 = (Base‘𝑊) |
lmodvsubcl.m | ⊢ − = (-g‘𝑊) |
Ref | Expression |
---|---|
lmodvsubcl | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodgrp 20887 | . 2 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
2 | lmodvsubcl.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | lmodvsubcl.m | . . 3 ⊢ − = (-g‘𝑊) | |
4 | 2, 3 | grpsubcl 19060 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) ∈ 𝑉) |
5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 Grpcgrp 18973 -gcsg 18975 LModclmod 20880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-sbg 18978 df-lmod 20882 |
This theorem is referenced by: lspsnsub 21028 lvecvscan 21136 ip2subdi 21685 ip2eq 21694 ipcau2 25287 nmparlem 25292 minveclem1 25477 minveclem2 25479 minveclem4 25485 minveclem6 25487 pjthlem1 25490 pjthlem2 25491 eqlkr 39055 lkrlsp 39058 mapdpglem1 41629 mapdpglem2 41630 mapdpglem5N 41634 mapdpglem8 41636 mapdpglem9 41637 mapdpglem13 41641 mapdpglem14 41642 mapdpglem27 41656 baerlem3lem2 41667 baerlem5alem2 41668 baerlem5blem2 41669 mapdheq4lem 41688 mapdh6lem1N 41690 mapdh6lem2N 41691 hdmap1l6lem1 41764 hdmap1l6lem2 41765 hdmap11 41805 hdmapinvlem4 41878 |
Copyright terms: Public domain | W3C validator |