MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvsubcl Structured version   Visualization version   GIF version

Theorem lmodvsubcl 20851
Description: Closure of vector subtraction. (hvsubcl 30932 analog.) (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodvsubcl.v 𝑉 = (Base‘𝑊)
lmodvsubcl.m = (-g𝑊)
Assertion
Ref Expression
lmodvsubcl ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)

Proof of Theorem lmodvsubcl
StepHypRef Expression
1 lmodgrp 20811 . 2 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
2 lmodvsubcl.v . . 3 𝑉 = (Base‘𝑊)
3 lmodvsubcl.m . . 3 = (-g𝑊)
42, 3grpsubcl 18990 . 2 ((𝑊 ∈ Grp ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
51, 4syl3an1 1163 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2107  cfv 6528  (class class class)co 7400  Basecbs 17215  Grpcgrp 18903  -gcsg 18905  LModclmod 20804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-fv 6536  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-1st 7983  df-2nd 7984  df-0g 17442  df-mgm 18605  df-sgrp 18684  df-mnd 18700  df-grp 18906  df-minusg 18907  df-sbg 18908  df-lmod 20806
This theorem is referenced by:  lspsnsub  20951  lvecvscan  21059  ip2subdi  21591  ip2eq  21600  ipcau2  25173  nmparlem  25178  minveclem1  25363  minveclem2  25365  minveclem4  25371  minveclem6  25373  pjthlem1  25376  pjthlem2  25377  eqlkr  39046  lkrlsp  39049  mapdpglem1  41620  mapdpglem2  41621  mapdpglem5N  41625  mapdpglem8  41627  mapdpglem9  41628  mapdpglem13  41632  mapdpglem14  41633  mapdpglem27  41647  baerlem3lem2  41658  baerlem5alem2  41659  baerlem5blem2  41660  mapdheq4lem  41679  mapdh6lem1N  41681  mapdh6lem2N  41682  hdmap1l6lem1  41755  hdmap1l6lem2  41756  hdmap11  41796  hdmapinvlem4  41869
  Copyright terms: Public domain W3C validator