Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmodvsubcl | Structured version Visualization version GIF version |
Description: Closure of vector subtraction. (hvsubcl 29424 analog.) (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodvsubcl.v | ⊢ 𝑉 = (Base‘𝑊) |
lmodvsubcl.m | ⊢ − = (-g‘𝑊) |
Ref | Expression |
---|---|
lmodvsubcl | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodgrp 20175 | . 2 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
2 | lmodvsubcl.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | lmodvsubcl.m | . . 3 ⊢ − = (-g‘𝑊) | |
4 | 2, 3 | grpsubcl 18700 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) ∈ 𝑉) |
5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ‘cfv 6458 (class class class)co 7307 Basecbs 16957 Grpcgrp 18622 -gcsg 18624 LModclmod 20168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-1st 7863 df-2nd 7864 df-0g 17197 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-grp 18625 df-minusg 18626 df-sbg 18627 df-lmod 20170 |
This theorem is referenced by: lspsnsub 20314 lvecvscan 20418 ip2subdi 20894 ip2eq 20903 ipcau2 24443 nmparlem 24448 minveclem1 24633 minveclem2 24635 minveclem4 24641 minveclem6 24643 pjthlem1 24646 pjthlem2 24647 eqlkr 37155 lkrlsp 37158 mapdpglem1 39728 mapdpglem2 39729 mapdpglem5N 39733 mapdpglem8 39735 mapdpglem9 39736 mapdpglem13 39740 mapdpglem14 39741 mapdpglem27 39755 baerlem3lem2 39766 baerlem5alem2 39767 baerlem5blem2 39768 mapdheq4lem 39787 mapdh6lem1N 39789 mapdh6lem2N 39790 hdmap1l6lem1 39863 hdmap1l6lem2 39864 hdmap11 39904 hdmapinvlem4 39977 |
Copyright terms: Public domain | W3C validator |