MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvsubcl Structured version   Visualization version   GIF version

Theorem lmodvsubcl 20878
Description: Closure of vector subtraction. (hvsubcl 30983 analog.) (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodvsubcl.v 𝑉 = (Base‘𝑊)
lmodvsubcl.m = (-g𝑊)
Assertion
Ref Expression
lmodvsubcl ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)

Proof of Theorem lmodvsubcl
StepHypRef Expression
1 lmodgrp 20838 . 2 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
2 lmodvsubcl.v . . 3 𝑉 = (Base‘𝑊)
3 lmodvsubcl.m . . 3 = (-g𝑊)
42, 3grpsubcl 19012 . 2 ((𝑊 ∈ Grp ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
51, 4syl3an1 1163 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2107  cfv 6542  (class class class)co 7414  Basecbs 17230  Grpcgrp 18925  -gcsg 18927  LModclmod 20831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7997  df-2nd 7998  df-0g 17462  df-mgm 18627  df-sgrp 18706  df-mnd 18722  df-grp 18928  df-minusg 18929  df-sbg 18930  df-lmod 20833
This theorem is referenced by:  lspsnsub  20978  lvecvscan  21086  ip2subdi  21629  ip2eq  21638  ipcau2  25223  nmparlem  25228  minveclem1  25413  minveclem2  25415  minveclem4  25421  minveclem6  25423  pjthlem1  25426  pjthlem2  25427  eqlkr  39041  lkrlsp  39044  mapdpglem1  41615  mapdpglem2  41616  mapdpglem5N  41620  mapdpglem8  41622  mapdpglem9  41623  mapdpglem13  41627  mapdpglem14  41628  mapdpglem27  41642  baerlem3lem2  41653  baerlem5alem2  41654  baerlem5blem2  41655  mapdheq4lem  41674  mapdh6lem1N  41676  mapdh6lem2N  41677  hdmap1l6lem1  41750  hdmap1l6lem2  41751  hdmap11  41791  hdmapinvlem4  41864
  Copyright terms: Public domain W3C validator