| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodvsubcl | Structured version Visualization version GIF version | ||
| Description: Closure of vector subtraction. (hvsubcl 31003 analog.) (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodvsubcl.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodvsubcl.m | ⊢ − = (-g‘𝑊) |
| Ref | Expression |
|---|---|
| lmodvsubcl | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodgrp 20829 | . 2 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
| 2 | lmodvsubcl.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | lmodvsubcl.m | . . 3 ⊢ − = (-g‘𝑊) | |
| 4 | 2, 3 | grpsubcl 19008 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) ∈ 𝑉) |
| 5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) ∈ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 Grpcgrp 18921 -gcsg 18923 LModclmod 20822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-minusg 18925 df-sbg 18926 df-lmod 20824 |
| This theorem is referenced by: lspsnsub 20969 lvecvscan 21077 ip2subdi 21609 ip2eq 21618 ipcau2 25191 nmparlem 25196 minveclem1 25381 minveclem2 25383 minveclem4 25389 minveclem6 25391 pjthlem1 25394 pjthlem2 25395 eqlkr 39122 lkrlsp 39125 mapdpglem1 41696 mapdpglem2 41697 mapdpglem5N 41701 mapdpglem8 41703 mapdpglem9 41704 mapdpglem13 41708 mapdpglem14 41709 mapdpglem27 41723 baerlem3lem2 41734 baerlem5alem2 41735 baerlem5blem2 41736 mapdheq4lem 41755 mapdh6lem1N 41757 mapdh6lem2N 41758 hdmap1l6lem1 41831 hdmap1l6lem2 41832 hdmap11 41872 hdmapinvlem4 41945 |
| Copyright terms: Public domain | W3C validator |