| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodvsubcl | Structured version Visualization version GIF version | ||
| Description: Closure of vector subtraction. (hvsubcl 30999 analog.) (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodvsubcl.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodvsubcl.m | ⊢ − = (-g‘𝑊) |
| Ref | Expression |
|---|---|
| lmodvsubcl | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodgrp 20802 | . 2 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
| 2 | lmodvsubcl.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | lmodvsubcl.m | . . 3 ⊢ − = (-g‘𝑊) | |
| 4 | 2, 3 | grpsubcl 18935 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) ∈ 𝑉) |
| 5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) ∈ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 Grpcgrp 18848 -gcsg 18850 LModclmod 20795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-minusg 18852 df-sbg 18853 df-lmod 20797 |
| This theorem is referenced by: lspsnsub 20942 lvecvscan 21050 ip2subdi 21583 ip2eq 21592 ipcau2 25162 nmparlem 25167 minveclem1 25352 minveclem2 25354 minveclem4 25360 minveclem6 25362 pjthlem1 25365 pjthlem2 25366 eqlkr 39219 lkrlsp 39222 mapdpglem1 41792 mapdpglem2 41793 mapdpglem5N 41797 mapdpglem8 41799 mapdpglem9 41800 mapdpglem13 41804 mapdpglem14 41805 mapdpglem27 41819 baerlem3lem2 41830 baerlem5alem2 41831 baerlem5blem2 41832 mapdheq4lem 41851 mapdh6lem1N 41853 mapdh6lem2N 41854 hdmap1l6lem1 41927 hdmap1l6lem2 41928 hdmap11 41968 hdmapinvlem4 42041 |
| Copyright terms: Public domain | W3C validator |