| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodvsubcl | Structured version Visualization version GIF version | ||
| Description: Closure of vector subtraction. (hvsubcl 30979 analog.) (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodvsubcl.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodvsubcl.m | ⊢ − = (-g‘𝑊) |
| Ref | Expression |
|---|---|
| lmodvsubcl | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodgrp 20788 | . 2 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
| 2 | lmodvsubcl.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | lmodvsubcl.m | . . 3 ⊢ − = (-g‘𝑊) | |
| 4 | 2, 3 | grpsubcl 18917 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) ∈ 𝑉) |
| 5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) ∈ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 Grpcgrp 18830 -gcsg 18832 LModclmod 20781 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 df-sbg 18835 df-lmod 20783 |
| This theorem is referenced by: lspsnsub 20928 lvecvscan 21036 ip2subdi 21569 ip2eq 21578 ipcau2 25150 nmparlem 25155 minveclem1 25340 minveclem2 25342 minveclem4 25348 minveclem6 25350 pjthlem1 25353 pjthlem2 25354 eqlkr 39077 lkrlsp 39080 mapdpglem1 41651 mapdpglem2 41652 mapdpglem5N 41656 mapdpglem8 41658 mapdpglem9 41659 mapdpglem13 41663 mapdpglem14 41664 mapdpglem27 41678 baerlem3lem2 41689 baerlem5alem2 41690 baerlem5blem2 41691 mapdheq4lem 41710 mapdh6lem1N 41712 mapdh6lem2N 41713 hdmap1l6lem1 41786 hdmap1l6lem2 41787 hdmap11 41827 hdmapinvlem4 41900 |
| Copyright terms: Public domain | W3C validator |