MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvsubcl Structured version   Visualization version   GIF version

Theorem lmodvsubcl 20842
Description: Closure of vector subtraction. (hvsubcl 30999 analog.) (Contributed by NM, 31-Mar-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodvsubcl.v 𝑉 = (Base‘𝑊)
lmodvsubcl.m = (-g𝑊)
Assertion
Ref Expression
lmodvsubcl ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)

Proof of Theorem lmodvsubcl
StepHypRef Expression
1 lmodgrp 20802 . 2 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
2 lmodvsubcl.v . . 3 𝑉 = (Base‘𝑊)
3 lmodvsubcl.m . . 3 = (-g𝑊)
42, 3grpsubcl 18935 . 2 ((𝑊 ∈ Grp ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
51, 4syl3an1 1163 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2113  cfv 6486  (class class class)co 7352  Basecbs 17122  Grpcgrp 18848  -gcsg 18850  LModclmod 20795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-sbg 18853  df-lmod 20797
This theorem is referenced by:  lspsnsub  20942  lvecvscan  21050  ip2subdi  21583  ip2eq  21592  ipcau2  25162  nmparlem  25167  minveclem1  25352  minveclem2  25354  minveclem4  25360  minveclem6  25362  pjthlem1  25365  pjthlem2  25366  eqlkr  39219  lkrlsp  39222  mapdpglem1  41792  mapdpglem2  41793  mapdpglem5N  41797  mapdpglem8  41799  mapdpglem9  41800  mapdpglem13  41804  mapdpglem14  41805  mapdpglem27  41819  baerlem3lem2  41830  baerlem5alem2  41831  baerlem5blem2  41832  mapdheq4lem  41851  mapdh6lem1N  41853  mapdh6lem2N  41854  hdmap1l6lem1  41927  hdmap1l6lem2  41928  hdmap11  41968  hdmapinvlem4  42041
  Copyright terms: Public domain W3C validator