Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem9 Structured version   Visualization version   GIF version

Theorem mapdpglem9 39431
Description: Lemma for mapdpg 39457. Baer p. 45, line 4: "...so that x would consequently belong to Fy." (Contributed by NM, 20-Mar-2015.)
Hypotheses
Ref Expression
mapdpglem.h 𝐻 = (LHyp‘𝐾)
mapdpglem.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpglem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpglem.v 𝑉 = (Base‘𝑈)
mapdpglem.s = (-g𝑈)
mapdpglem.n 𝑁 = (LSpan‘𝑈)
mapdpglem.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpglem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpglem.x (𝜑𝑋𝑉)
mapdpglem.y (𝜑𝑌𝑉)
mapdpglem1.p = (LSSum‘𝐶)
mapdpglem2.j 𝐽 = (LSpan‘𝐶)
mapdpglem3.f 𝐹 = (Base‘𝐶)
mapdpglem3.te (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
mapdpglem3.a 𝐴 = (Scalar‘𝑈)
mapdpglem3.b 𝐵 = (Base‘𝐴)
mapdpglem3.t · = ( ·𝑠𝐶)
mapdpglem3.r 𝑅 = (-g𝐶)
mapdpglem3.g (𝜑𝐺𝐹)
mapdpglem3.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
mapdpglem4.q 𝑄 = (0g𝑈)
mapdpglem.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdpglem4.jt (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
mapdpglem4.z 0 = (0g𝐴)
mapdpglem4.g4 (𝜑𝑔𝐵)
mapdpglem4.z4 (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
mapdpglem4.t4 (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
mapdpglem4.xn (𝜑𝑋𝑄)
mapdpglem4.g0 (𝜑𝑔 = 0 )
Assertion
Ref Expression
mapdpglem9 (𝜑𝑋 ∈ (𝑁‘{𝑌}))
Distinct variable groups:   𝑡,   𝑡,𝐶   𝑡,𝐽   𝑡,𝑀   𝑡,𝑁   𝑡,𝑋   𝑡,𝑌   𝐵,𝑔   𝑧,𝑔,𝐶   𝑔,𝐹   𝑔,𝐺,𝑧   𝑔,𝐽,𝑧   𝑔,𝑀,𝑧   𝑔,𝑁,𝑧   𝑅,𝑔,𝑧   · ,𝑔,𝑧   𝑔,𝑌,𝑧,𝑡
Allowed substitution hints:   𝜑(𝑧,𝑡,𝑔)   𝐴(𝑧,𝑡,𝑔)   𝐵(𝑧,𝑡)   (𝑧,𝑡,𝑔)   𝑄(𝑧,𝑡,𝑔)   𝑅(𝑡)   · (𝑡)   𝑈(𝑧,𝑡,𝑔)   𝐹(𝑧,𝑡)   𝐺(𝑡)   𝐻(𝑧,𝑡,𝑔)   𝐾(𝑧,𝑡,𝑔)   (𝑧,𝑔)   𝑉(𝑧,𝑡,𝑔)   𝑊(𝑧,𝑡,𝑔)   𝑋(𝑧,𝑔)   0 (𝑧,𝑡,𝑔)

Proof of Theorem mapdpglem9
StepHypRef Expression
1 mapdpglem.h . . . 4 𝐻 = (LHyp‘𝐾)
2 mapdpglem.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdpglem.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3dvhlmod 38861 . . 3 (𝜑𝑈 ∈ LMod)
5 mapdpglem.x . . 3 (𝜑𝑋𝑉)
6 mapdpglem.y . . 3 (𝜑𝑌𝑉)
7 mapdpglem.v . . . 4 𝑉 = (Base‘𝑈)
8 eqid 2737 . . . 4 (+g𝑈) = (+g𝑈)
9 mapdpglem.s . . . 4 = (-g𝑈)
107, 8, 9lmodvnpcan 19953 . . 3 ((𝑈 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 𝑌)(+g𝑈)𝑌) = 𝑋)
114, 5, 6, 10syl3anc 1373 . 2 (𝜑 → ((𝑋 𝑌)(+g𝑈)𝑌) = 𝑋)
12 eqid 2737 . . . . 5 (LSubSp‘𝑈) = (LSubSp‘𝑈)
13 mapdpglem.n . . . . 5 𝑁 = (LSpan‘𝑈)
147, 12, 13lspsncl 20014 . . . 4 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
154, 6, 14syl2anc 587 . . 3 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
16 mapdpglem.m . . . . 5 𝑀 = ((mapd‘𝐾)‘𝑊)
17 mapdpglem.c . . . . 5 𝐶 = ((LCDual‘𝐾)‘𝑊)
18 mapdpglem1.p . . . . 5 = (LSSum‘𝐶)
19 mapdpglem2.j . . . . 5 𝐽 = (LSpan‘𝐶)
20 mapdpglem3.f . . . . 5 𝐹 = (Base‘𝐶)
21 mapdpglem3.te . . . . 5 (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
22 mapdpglem3.a . . . . 5 𝐴 = (Scalar‘𝑈)
23 mapdpglem3.b . . . . 5 𝐵 = (Base‘𝐴)
24 mapdpglem3.t . . . . 5 · = ( ·𝑠𝐶)
25 mapdpglem3.r . . . . 5 𝑅 = (-g𝐶)
26 mapdpglem3.g . . . . 5 (𝜑𝐺𝐹)
27 mapdpglem3.e . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
28 mapdpglem4.q . . . . 5 𝑄 = (0g𝑈)
29 mapdpglem.ne . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
30 mapdpglem4.jt . . . . 5 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
31 mapdpglem4.z . . . . 5 0 = (0g𝐴)
32 mapdpglem4.g4 . . . . 5 (𝜑𝑔𝐵)
33 mapdpglem4.z4 . . . . 5 (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
34 mapdpglem4.t4 . . . . 5 (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
35 mapdpglem4.xn . . . . 5 (𝜑𝑋𝑄)
36 mapdpglem4.g0 . . . . 5 (𝜑𝑔 = 0 )
371, 16, 2, 7, 9, 13, 17, 3, 5, 6, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36mapdpglem8 39430 . . . 4 (𝜑 → (𝑁‘{(𝑋 𝑌)}) ⊆ (𝑁‘{𝑌}))
387, 9lmodvsubcl 19944 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
394, 5, 6, 38syl3anc 1373 . . . . 5 (𝜑 → (𝑋 𝑌) ∈ 𝑉)
407, 13lspsnid 20030 . . . . 5 ((𝑈 ∈ LMod ∧ (𝑋 𝑌) ∈ 𝑉) → (𝑋 𝑌) ∈ (𝑁‘{(𝑋 𝑌)}))
414, 39, 40syl2anc 587 . . . 4 (𝜑 → (𝑋 𝑌) ∈ (𝑁‘{(𝑋 𝑌)}))
4237, 41sseldd 3902 . . 3 (𝜑 → (𝑋 𝑌) ∈ (𝑁‘{𝑌}))
437, 13lspsnid 20030 . . . 4 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → 𝑌 ∈ (𝑁‘{𝑌}))
444, 6, 43syl2anc 587 . . 3 (𝜑𝑌 ∈ (𝑁‘{𝑌}))
458, 12lssvacl 19991 . . 3 (((𝑈 ∈ LMod ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) ∧ ((𝑋 𝑌) ∈ (𝑁‘{𝑌}) ∧ 𝑌 ∈ (𝑁‘{𝑌}))) → ((𝑋 𝑌)(+g𝑈)𝑌) ∈ (𝑁‘{𝑌}))
464, 15, 42, 44, 45syl22anc 839 . 2 (𝜑 → ((𝑋 𝑌)(+g𝑈)𝑌) ∈ (𝑁‘{𝑌}))
4711, 46eqeltrrd 2839 1 (𝜑𝑋 ∈ (𝑁‘{𝑌}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wne 2940  {csn 4541  cfv 6380  (class class class)co 7213  Basecbs 16760  +gcplusg 16802  Scalarcsca 16805   ·𝑠 cvsca 16806  0gc0g 16944  -gcsg 18367  LSSumclsm 19023  LModclmod 19899  LSubSpclss 19968  LSpanclspn 20008  HLchlt 37101  LHypclh 37735  DVecHcdvh 38829  LCDualclcd 39337  mapdcmpd 39375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-riotaBAD 36704
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-tpos 7968  df-undef 8015  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-n0 12091  df-z 12177  df-uz 12439  df-fz 13096  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-sca 16818  df-vsca 16819  df-0g 16946  df-mre 17089  df-mrc 17090  df-acs 17092  df-proset 17802  df-poset 17820  df-plt 17836  df-lub 17852  df-glb 17853  df-join 17854  df-meet 17855  df-p0 17931  df-p1 17932  df-lat 17938  df-clat 18005  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-grp 18368  df-minusg 18369  df-sbg 18370  df-subg 18540  df-cntz 18711  df-oppg 18738  df-lsm 19025  df-cmn 19172  df-abl 19173  df-mgp 19505  df-ur 19517  df-ring 19564  df-oppr 19641  df-dvdsr 19659  df-unit 19660  df-invr 19690  df-dvr 19701  df-drng 19769  df-lmod 19901  df-lss 19969  df-lsp 20009  df-lvec 20140  df-lsatoms 36727  df-lshyp 36728  df-lcv 36770  df-lfl 36809  df-lkr 36837  df-ldual 36875  df-oposet 36927  df-ol 36929  df-oml 36930  df-covers 37017  df-ats 37018  df-atl 37049  df-cvlat 37073  df-hlat 37102  df-llines 37249  df-lplanes 37250  df-lvols 37251  df-lines 37252  df-psubsp 37254  df-pmap 37255  df-padd 37547  df-lhyp 37739  df-laut 37740  df-ldil 37855  df-ltrn 37856  df-trl 37910  df-tgrp 38494  df-tendo 38506  df-edring 38508  df-dveca 38754  df-disoa 38780  df-dvech 38830  df-dib 38890  df-dic 38924  df-dih 38980  df-doch 39099  df-djh 39146  df-lcdual 39338  df-mapd 39376
This theorem is referenced by:  mapdpglem10  39432
  Copyright terms: Public domain W3C validator