Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem13 Structured version   Visualization version   GIF version

Theorem mapdpglem13 37760
Description: Lemma for mapdpg 37782. (Contributed by NM, 20-Mar-2015.)
Hypotheses
Ref Expression
mapdpglem.h 𝐻 = (LHyp‘𝐾)
mapdpglem.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpglem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpglem.v 𝑉 = (Base‘𝑈)
mapdpglem.s = (-g𝑈)
mapdpglem.n 𝑁 = (LSpan‘𝑈)
mapdpglem.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpglem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpglem.x (𝜑𝑋𝑉)
mapdpglem.y (𝜑𝑌𝑉)
mapdpglem1.p = (LSSum‘𝐶)
mapdpglem2.j 𝐽 = (LSpan‘𝐶)
mapdpglem3.f 𝐹 = (Base‘𝐶)
mapdpglem3.te (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
mapdpglem3.a 𝐴 = (Scalar‘𝑈)
mapdpglem3.b 𝐵 = (Base‘𝐴)
mapdpglem3.t · = ( ·𝑠𝐶)
mapdpglem3.r 𝑅 = (-g𝐶)
mapdpglem3.g (𝜑𝐺𝐹)
mapdpglem3.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
mapdpglem4.q 𝑄 = (0g𝑈)
mapdpglem.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdpglem4.jt (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
mapdpglem4.z 0 = (0g𝐴)
mapdpglem4.g4 (𝜑𝑔𝐵)
mapdpglem4.z4 (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
mapdpglem4.t4 (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
mapdpglem4.xn (𝜑𝑋𝑄)
mapdpglem12.yn (𝜑𝑌𝑄)
mapdpglem12.g0 (𝜑𝑧 = (0g𝐶))
Assertion
Ref Expression
mapdpglem13 (𝜑 → (𝑁‘{(𝑋 𝑌)}) ⊆ (𝑁‘{𝑋}))
Distinct variable groups:   𝑡,   𝑡,𝐶   𝑡,𝐽   𝑡,𝑀   𝑡,𝑁   𝑡,𝑋   𝑡,𝑌   𝐵,𝑔   𝑧,𝑔,𝐶   𝑔,𝐹   𝑔,𝐺,𝑧   𝑔,𝐽,𝑧   𝑔,𝑀,𝑧   𝑔,𝑁,𝑧   𝑅,𝑔,𝑧   · ,𝑔,𝑧   𝑔,𝑌,𝑧,𝑡
Allowed substitution hints:   𝜑(𝑧,𝑡,𝑔)   𝐴(𝑧,𝑡,𝑔)   𝐵(𝑧,𝑡)   (𝑧,𝑡,𝑔)   𝑄(𝑧,𝑡,𝑔)   𝑅(𝑡)   · (𝑡)   𝑈(𝑧,𝑡,𝑔)   𝐹(𝑧,𝑡)   𝐺(𝑡)   𝐻(𝑧,𝑡,𝑔)   𝐾(𝑧,𝑡,𝑔)   (𝑧,𝑔)   𝑉(𝑧,𝑡,𝑔)   𝑊(𝑧,𝑡,𝑔)   𝑋(𝑧,𝑔)   0 (𝑧,𝑡,𝑔)

Proof of Theorem mapdpglem13
StepHypRef Expression
1 mapdpglem4.jt . . 3 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
2 eqid 2826 . . . 4 (LSubSp‘𝐶) = (LSubSp‘𝐶)
3 mapdpglem2.j . . . 4 𝐽 = (LSpan‘𝐶)
4 mapdpglem.h . . . . 5 𝐻 = (LHyp‘𝐾)
5 mapdpglem.c . . . . 5 𝐶 = ((LCDual‘𝐾)‘𝑊)
6 mapdpglem.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
74, 5, 6lcdlmod 37668 . . . 4 (𝜑𝐶 ∈ LMod)
8 mapdpglem.m . . . . 5 𝑀 = ((mapd‘𝐾)‘𝑊)
9 mapdpglem.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
10 eqid 2826 . . . . 5 (LSubSp‘𝑈) = (LSubSp‘𝑈)
114, 9, 6dvhlmod 37186 . . . . . 6 (𝜑𝑈 ∈ LMod)
12 mapdpglem.x . . . . . 6 (𝜑𝑋𝑉)
13 mapdpglem.v . . . . . . 7 𝑉 = (Base‘𝑈)
14 mapdpglem.n . . . . . . 7 𝑁 = (LSpan‘𝑈)
1513, 10, 14lspsncl 19337 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
1611, 12, 15syl2anc 581 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
174, 8, 9, 10, 5, 2, 6, 16mapdcl2 37732 . . . 4 (𝜑 → (𝑀‘(𝑁‘{𝑋})) ∈ (LSubSp‘𝐶))
18 mapdpglem.s . . . . 5 = (-g𝑈)
19 mapdpglem.y . . . . 5 (𝜑𝑌𝑉)
20 mapdpglem1.p . . . . 5 = (LSSum‘𝐶)
21 mapdpglem3.f . . . . 5 𝐹 = (Base‘𝐶)
22 mapdpglem3.te . . . . 5 (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
23 mapdpglem3.a . . . . 5 𝐴 = (Scalar‘𝑈)
24 mapdpglem3.b . . . . 5 𝐵 = (Base‘𝐴)
25 mapdpglem3.t . . . . 5 · = ( ·𝑠𝐶)
26 mapdpglem3.r . . . . 5 𝑅 = (-g𝐶)
27 mapdpglem3.g . . . . 5 (𝜑𝐺𝐹)
28 mapdpglem3.e . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
29 mapdpglem4.q . . . . 5 𝑄 = (0g𝑈)
30 mapdpglem.ne . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
31 mapdpglem4.z . . . . 5 0 = (0g𝐴)
32 mapdpglem4.g4 . . . . 5 (𝜑𝑔𝐵)
33 mapdpglem4.z4 . . . . 5 (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
34 mapdpglem4.t4 . . . . 5 (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
35 mapdpglem4.xn . . . . 5 (𝜑𝑋𝑄)
36 mapdpglem12.yn . . . . 5 (𝜑𝑌𝑄)
37 mapdpglem12.g0 . . . . 5 (𝜑𝑧 = (0g𝐶))
384, 8, 9, 13, 18, 14, 5, 6, 12, 19, 20, 3, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 1, 31, 32, 33, 34, 35, 36, 37mapdpglem12 37759 . . . 4 (𝜑𝑡 ∈ (𝑀‘(𝑁‘{𝑋})))
392, 3, 7, 17, 38lspsnel5a 19356 . . 3 (𝜑 → (𝐽‘{𝑡}) ⊆ (𝑀‘(𝑁‘{𝑋})))
401, 39eqsstrd 3865 . 2 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) ⊆ (𝑀‘(𝑁‘{𝑋})))
4113, 18lmodvsubcl 19265 . . . . 5 ((𝑈 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
4211, 12, 19, 41syl3anc 1496 . . . 4 (𝜑 → (𝑋 𝑌) ∈ 𝑉)
4313, 10, 14lspsncl 19337 . . . 4 ((𝑈 ∈ LMod ∧ (𝑋 𝑌) ∈ 𝑉) → (𝑁‘{(𝑋 𝑌)}) ∈ (LSubSp‘𝑈))
4411, 42, 43syl2anc 581 . . 3 (𝜑 → (𝑁‘{(𝑋 𝑌)}) ∈ (LSubSp‘𝑈))
454, 9, 10, 8, 6, 44, 16mapdord 37714 . 2 (𝜑 → ((𝑀‘(𝑁‘{(𝑋 𝑌)})) ⊆ (𝑀‘(𝑁‘{𝑋})) ↔ (𝑁‘{(𝑋 𝑌)}) ⊆ (𝑁‘{𝑋})))
4640, 45mpbid 224 1 (𝜑 → (𝑁‘{(𝑋 𝑌)}) ⊆ (𝑁‘{𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wcel 2166  wne 3000  wss 3799  {csn 4398  cfv 6124  (class class class)co 6906  Basecbs 16223  Scalarcsca 16309   ·𝑠 cvsca 16310  0gc0g 16454  -gcsg 17779  LSSumclsm 18401  LModclmod 19220  LSubSpclss 19289  LSpanclspn 19331  HLchlt 35426  LHypclh 36060  DVecHcdvh 37154  LCDualclcd 37662  mapdcmpd 37700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330  ax-riotaBAD 35029
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-int 4699  df-iun 4743  df-iin 4744  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-of 7158  df-om 7328  df-1st 7429  df-2nd 7430  df-tpos 7618  df-undef 7665  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-1o 7827  df-oadd 7831  df-er 8010  df-map 8125  df-en 8224  df-dom 8225  df-sdom 8226  df-fin 8227  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-nn 11352  df-2 11415  df-3 11416  df-4 11417  df-5 11418  df-6 11419  df-n0 11620  df-z 11706  df-uz 11970  df-fz 12621  df-struct 16225  df-ndx 16226  df-slot 16227  df-base 16229  df-sets 16230  df-ress 16231  df-plusg 16319  df-mulr 16320  df-sca 16322  df-vsca 16323  df-0g 16456  df-mre 16600  df-mrc 16601  df-acs 16603  df-proset 17282  df-poset 17300  df-plt 17312  df-lub 17328  df-glb 17329  df-join 17330  df-meet 17331  df-p0 17393  df-p1 17394  df-lat 17400  df-clat 17462  df-mgm 17596  df-sgrp 17638  df-mnd 17649  df-submnd 17690  df-grp 17780  df-minusg 17781  df-sbg 17782  df-subg 17943  df-cntz 18101  df-oppg 18127  df-lsm 18403  df-cmn 18549  df-abl 18550  df-mgp 18845  df-ur 18857  df-ring 18904  df-oppr 18978  df-dvdsr 18996  df-unit 18997  df-invr 19027  df-dvr 19038  df-drng 19106  df-lmod 19222  df-lss 19290  df-lsp 19332  df-lvec 19463  df-lsatoms 35052  df-lshyp 35053  df-lcv 35095  df-lfl 35134  df-lkr 35162  df-ldual 35200  df-oposet 35252  df-ol 35254  df-oml 35255  df-covers 35342  df-ats 35343  df-atl 35374  df-cvlat 35398  df-hlat 35427  df-llines 35574  df-lplanes 35575  df-lvols 35576  df-lines 35577  df-psubsp 35579  df-pmap 35580  df-padd 35872  df-lhyp 36064  df-laut 36065  df-ldil 36180  df-ltrn 36181  df-trl 36235  df-tgrp 36819  df-tendo 36831  df-edring 36833  df-dveca 37079  df-disoa 37105  df-dvech 37155  df-dib 37215  df-dic 37249  df-dih 37305  df-doch 37424  df-djh 37471  df-lcdual 37663  df-mapd 37701
This theorem is referenced by:  mapdpglem14  37761
  Copyright terms: Public domain W3C validator