Proof of Theorem mapdh6lem1N
Step | Hyp | Ref
| Expression |
1 | | mapdh.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
2 | | mapdh.m |
. . . 4
⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
3 | | mapdh.u |
. . . 4
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
4 | | eqid 2738 |
. . . 4
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) |
5 | | mapdh.k |
. . . 4
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
6 | 1, 3, 5 | dvhlmod 39124 |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ LMod) |
7 | | mapdhcl.x |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
8 | 7 | eldifad 3899 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
9 | | mapdhe6.y |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
10 | 9 | eldifad 3899 |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ 𝑉) |
11 | | mapdh.v |
. . . . . . . 8
⊢ 𝑉 = (Base‘𝑈) |
12 | | mapdh.s |
. . . . . . . 8
⊢ − =
(-g‘𝑈) |
13 | 11, 12 | lmodvsubcl 20168 |
. . . . . . 7
⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) ∈ 𝑉) |
14 | 6, 8, 10, 13 | syl3anc 1370 |
. . . . . 6
⊢ (𝜑 → (𝑋 − 𝑌) ∈ 𝑉) |
15 | | mapdh.n |
. . . . . . 7
⊢ 𝑁 = (LSpan‘𝑈) |
16 | 11, 4, 15 | lspsncl 20239 |
. . . . . 6
⊢ ((𝑈 ∈ LMod ∧ (𝑋 − 𝑌) ∈ 𝑉) → (𝑁‘{(𝑋 − 𝑌)}) ∈ (LSubSp‘𝑈)) |
17 | 6, 14, 16 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (𝑁‘{(𝑋 − 𝑌)}) ∈ (LSubSp‘𝑈)) |
18 | | mapdhe6.z |
. . . . . . 7
⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
19 | 18 | eldifad 3899 |
. . . . . 6
⊢ (𝜑 → 𝑍 ∈ 𝑉) |
20 | 11, 4, 15 | lspsncl 20239 |
. . . . . 6
⊢ ((𝑈 ∈ LMod ∧ 𝑍 ∈ 𝑉) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈)) |
21 | 6, 19, 20 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈)) |
22 | | eqid 2738 |
. . . . . 6
⊢
(LSSum‘𝑈) =
(LSSum‘𝑈) |
23 | 4, 22 | lsmcl 20345 |
. . . . 5
⊢ ((𝑈 ∈ LMod ∧ (𝑁‘{(𝑋 − 𝑌)}) ∈ (LSubSp‘𝑈) ∧ (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈)) → ((𝑁‘{(𝑋 − 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍})) ∈ (LSubSp‘𝑈)) |
24 | 6, 17, 21, 23 | syl3anc 1370 |
. . . 4
⊢ (𝜑 → ((𝑁‘{(𝑋 − 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍})) ∈ (LSubSp‘𝑈)) |
25 | 11, 12 | lmodvsubcl 20168 |
. . . . . . 7
⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉) → (𝑋 − 𝑍) ∈ 𝑉) |
26 | 6, 8, 19, 25 | syl3anc 1370 |
. . . . . 6
⊢ (𝜑 → (𝑋 − 𝑍) ∈ 𝑉) |
27 | 11, 4, 15 | lspsncl 20239 |
. . . . . 6
⊢ ((𝑈 ∈ LMod ∧ (𝑋 − 𝑍) ∈ 𝑉) → (𝑁‘{(𝑋 − 𝑍)}) ∈ (LSubSp‘𝑈)) |
28 | 6, 26, 27 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (𝑁‘{(𝑋 − 𝑍)}) ∈ (LSubSp‘𝑈)) |
29 | 11, 4, 15 | lspsncl 20239 |
. . . . . 6
⊢ ((𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
30 | 6, 10, 29 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
31 | 4, 22 | lsmcl 20345 |
. . . . 5
⊢ ((𝑈 ∈ LMod ∧ (𝑁‘{(𝑋 − 𝑍)}) ∈ (LSubSp‘𝑈) ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) → ((𝑁‘{(𝑋 − 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌})) ∈ (LSubSp‘𝑈)) |
32 | 6, 28, 30, 31 | syl3anc 1370 |
. . . 4
⊢ (𝜑 → ((𝑁‘{(𝑋 − 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌})) ∈ (LSubSp‘𝑈)) |
33 | 1, 2, 3, 4, 5, 24,
32 | mapdin 39676 |
. . 3
⊢ (𝜑 → (𝑀‘(((𝑁‘{(𝑋 − 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 − 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌})))) = ((𝑀‘((𝑁‘{(𝑋 − 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍}))) ∩ (𝑀‘((𝑁‘{(𝑋 − 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌}))))) |
34 | | mapdh.c |
. . . . . 6
⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
35 | | eqid 2738 |
. . . . . 6
⊢
(LSSum‘𝐶) =
(LSSum‘𝐶) |
36 | 1, 2, 3, 4, 22, 34, 35, 5, 17, 21 | mapdlsm 39678 |
. . . . 5
⊢ (𝜑 → (𝑀‘((𝑁‘{(𝑋 − 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍}))) = ((𝑀‘(𝑁‘{(𝑋 − 𝑌)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍})))) |
37 | 1, 2, 3, 4, 22, 34, 35, 5, 28, 30 | mapdlsm 39678 |
. . . . 5
⊢ (𝜑 → (𝑀‘((𝑁‘{(𝑋 − 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌}))) = ((𝑀‘(𝑁‘{(𝑋 − 𝑍)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌})))) |
38 | 36, 37 | ineq12d 4147 |
. . . 4
⊢ (𝜑 → ((𝑀‘((𝑁‘{(𝑋 − 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍}))) ∩ (𝑀‘((𝑁‘{(𝑋 − 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌})))) = (((𝑀‘(𝑁‘{(𝑋 − 𝑌)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍}))) ∩ ((𝑀‘(𝑁‘{(𝑋 − 𝑍)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))))) |
39 | | mapdh6.fg |
. . . . . . . 8
⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) |
40 | | mapdh.q |
. . . . . . . . 9
⊢ 𝑄 = (0g‘𝐶) |
41 | | mapdh.i |
. . . . . . . . 9
⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd
‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st
‘(1st ‘𝑥)) − (2nd
‘𝑥))})) = (𝐽‘{((2nd
‘(1st ‘𝑥))𝑅ℎ)}))))) |
42 | | mapdhc.o |
. . . . . . . . 9
⊢ 0 =
(0g‘𝑈) |
43 | | mapdh.d |
. . . . . . . . 9
⊢ 𝐷 = (Base‘𝐶) |
44 | | mapdh.r |
. . . . . . . . 9
⊢ 𝑅 = (-g‘𝐶) |
45 | | mapdh.j |
. . . . . . . . 9
⊢ 𝐽 = (LSpan‘𝐶) |
46 | | mapdhc.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ 𝐷) |
47 | | mapdh.mn |
. . . . . . . . 9
⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
48 | 1, 3, 5 | dvhlvec 39123 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑈 ∈ LVec) |
49 | | mapdh6.yz |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) |
50 | | mapdhe6.xn |
. . . . . . . . . . . . 13
⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
51 | 11, 42, 15, 48, 10, 18, 8, 49, 50 | lspindp2 20397 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌}))) |
52 | 51 | simpld 495 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
53 | 40, 41, 1, 2, 3, 11,
12, 42, 15, 34, 43, 44, 45, 5, 46, 47, 7, 10, 52 | mapdhcl 39741 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) ∈ 𝐷) |
54 | 39, 53 | eqeltrrd 2840 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ 𝐷) |
55 | 40, 41, 1, 2, 3, 11,
12, 42, 15, 34, 43, 44, 45, 5, 46, 47, 7, 9, 54, 52 | mapdheq 39742 |
. . . . . . . 8
⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)})))) |
56 | 39, 55 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))) |
57 | 56 | simprd 496 |
. . . . . 6
⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)})) |
58 | | mapdh6.fe |
. . . . . . . 8
⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = 𝐸) |
59 | 11, 42, 15, 48, 9, 19, 8, 49, 50 | lspindp1 20395 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}) ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍}))) |
60 | 59 | simpld 495 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) |
61 | 40, 41, 1, 2, 3, 11,
12, 42, 15, 34, 43, 44, 45, 5, 46, 47, 7, 19, 60 | mapdhcl 39741 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) ∈ 𝐷) |
62 | 58, 61 | eqeltrrd 2840 |
. . . . . . . . 9
⊢ (𝜑 → 𝐸 ∈ 𝐷) |
63 | 40, 41, 1, 2, 3, 11,
12, 42, 15, 34, 43, 44, 45, 5, 46, 47, 7, 18, 62, 60 | mapdheq 39742 |
. . . . . . . 8
⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑍〉) = 𝐸 ↔ ((𝑀‘(𝑁‘{𝑍})) = (𝐽‘{𝐸}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑍)})) = (𝐽‘{(𝐹𝑅𝐸)})))) |
64 | 58, 63 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → ((𝑀‘(𝑁‘{𝑍})) = (𝐽‘{𝐸}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑍)})) = (𝐽‘{(𝐹𝑅𝐸)}))) |
65 | 64 | simpld 495 |
. . . . . 6
⊢ (𝜑 → (𝑀‘(𝑁‘{𝑍})) = (𝐽‘{𝐸})) |
66 | 57, 65 | oveq12d 7293 |
. . . . 5
⊢ (𝜑 → ((𝑀‘(𝑁‘{(𝑋 − 𝑌)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍}))) = ((𝐽‘{(𝐹𝑅𝐺)})(LSSum‘𝐶)(𝐽‘{𝐸}))) |
67 | 64 | simprd 496 |
. . . . . 6
⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − 𝑍)})) = (𝐽‘{(𝐹𝑅𝐸)})) |
68 | 56 | simpld 495 |
. . . . . 6
⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺})) |
69 | 67, 68 | oveq12d 7293 |
. . . . 5
⊢ (𝜑 → ((𝑀‘(𝑁‘{(𝑋 − 𝑍)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) = ((𝐽‘{(𝐹𝑅𝐸)})(LSSum‘𝐶)(𝐽‘{𝐺}))) |
70 | 66, 69 | ineq12d 4147 |
. . . 4
⊢ (𝜑 → (((𝑀‘(𝑁‘{(𝑋 − 𝑌)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍}))) ∩ ((𝑀‘(𝑁‘{(𝑋 − 𝑍)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌})))) = (((𝐽‘{(𝐹𝑅𝐺)})(LSSum‘𝐶)(𝐽‘{𝐸})) ∩ ((𝐽‘{(𝐹𝑅𝐸)})(LSSum‘𝐶)(𝐽‘{𝐺})))) |
71 | 38, 70 | eqtrd 2778 |
. . 3
⊢ (𝜑 → ((𝑀‘((𝑁‘{(𝑋 − 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍}))) ∩ (𝑀‘((𝑁‘{(𝑋 − 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌})))) = (((𝐽‘{(𝐹𝑅𝐺)})(LSSum‘𝐶)(𝐽‘{𝐸})) ∩ ((𝐽‘{(𝐹𝑅𝐸)})(LSSum‘𝐶)(𝐽‘{𝐺})))) |
72 | 33, 71 | eqtrd 2778 |
. 2
⊢ (𝜑 → (𝑀‘(((𝑁‘{(𝑋 − 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 − 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌})))) = (((𝐽‘{(𝐹𝑅𝐺)})(LSSum‘𝐶)(𝐽‘{𝐸})) ∩ ((𝐽‘{(𝐹𝑅𝐸)})(LSSum‘𝐶)(𝐽‘{𝐺})))) |
73 | | mapdh.p |
. . . 4
⊢ + =
(+g‘𝑈) |
74 | 11, 12, 42, 22, 15, 48, 8, 50, 49, 9, 18, 73 | baerlem5a 39728 |
. . 3
⊢ (𝜑 → (𝑁‘{(𝑋 − (𝑌 + 𝑍))}) = (((𝑁‘{(𝑋 − 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 − 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌})))) |
75 | 74 | fveq2d 6778 |
. 2
⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − (𝑌 + 𝑍))})) = (𝑀‘(((𝑁‘{(𝑋 − 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 − 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌}))))) |
76 | 1, 34, 5 | lcdlvec 39605 |
. . 3
⊢ (𝜑 → 𝐶 ∈ LVec) |
77 | 1, 2, 3, 11, 15, 34, 43, 45, 5, 46, 47, 8, 10, 54, 68, 19, 62, 65, 50 | mapdindp 39685 |
. . 3
⊢ (𝜑 → ¬ 𝐹 ∈ (𝐽‘{𝐺, 𝐸})) |
78 | 1, 2, 3, 11, 15, 34, 43, 45, 5, 54, 68, 10, 19, 62, 65, 49 | mapdncol 39684 |
. . 3
⊢ (𝜑 → (𝐽‘{𝐺}) ≠ (𝐽‘{𝐸})) |
79 | 1, 2, 3, 11, 15, 34, 43, 45, 5, 54, 68, 42, 40, 9 | mapdn0 39683 |
. . 3
⊢ (𝜑 → 𝐺 ∈ (𝐷 ∖ {𝑄})) |
80 | 1, 2, 3, 11, 15, 34, 43, 45, 5, 62, 65, 42, 40, 18 | mapdn0 39683 |
. . 3
⊢ (𝜑 → 𝐸 ∈ (𝐷 ∖ {𝑄})) |
81 | | mapdh.a |
. . 3
⊢ ✚ =
(+g‘𝐶) |
82 | 43, 44, 40, 35, 45, 76, 46, 77, 78, 79, 80, 81 | baerlem5a 39728 |
. 2
⊢ (𝜑 → (𝐽‘{(𝐹𝑅(𝐺 ✚ 𝐸))}) = (((𝐽‘{(𝐹𝑅𝐺)})(LSSum‘𝐶)(𝐽‘{𝐸})) ∩ ((𝐽‘{(𝐹𝑅𝐸)})(LSSum‘𝐶)(𝐽‘{𝐺})))) |
83 | 72, 75, 82 | 3eqtr4d 2788 |
1
⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − (𝑌 + 𝑍))})) = (𝐽‘{(𝐹𝑅(𝐺 ✚ 𝐸))})) |