Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1l6lem2 Structured version   Visualization version   GIF version

Theorem hdmap1l6lem2 41928
Description: Lemma for hdmap1l6 41941. Part (6) in [Baer] p. 47, lines 20-22. (Contributed by NM, 13-Apr-2015.)
Hypotheses
Ref Expression
hdmap1l6.h 𝐻 = (LHyp‘𝐾)
hdmap1l6.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap1l6.v 𝑉 = (Base‘𝑈)
hdmap1l6.p + = (+g𝑈)
hdmap1l6.s = (-g𝑈)
hdmap1l6c.o 0 = (0g𝑈)
hdmap1l6.n 𝑁 = (LSpan‘𝑈)
hdmap1l6.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap1l6.d 𝐷 = (Base‘𝐶)
hdmap1l6.a = (+g𝐶)
hdmap1l6.r 𝑅 = (-g𝐶)
hdmap1l6.q 𝑄 = (0g𝐶)
hdmap1l6.l 𝐿 = (LSpan‘𝐶)
hdmap1l6.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap1l6.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmap1l6.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap1l6.f (𝜑𝐹𝐷)
hdmap1l6cl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hdmap1l6.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
hdmap1l6e.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
hdmap1l6e.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
hdmap1l6e.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
hdmap1l6.yz (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
hdmap1l6.fg (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
hdmap1l6.fe (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
Assertion
Ref Expression
hdmap1l6lem2 (𝜑 → (𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝐿‘{(𝐺 𝐸)}))

Proof of Theorem hdmap1l6lem2
StepHypRef Expression
1 hdmap1l6.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hdmap1l6.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
3 hdmap1l6.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 eqid 2733 . . . 4 (LSubSp‘𝑈) = (LSubSp‘𝑈)
5 hdmap1l6.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
61, 3, 5dvhlmod 41230 . . . . 5 (𝜑𝑈 ∈ LMod)
7 hdmap1l6e.y . . . . . . 7 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
87eldifad 3910 . . . . . 6 (𝜑𝑌𝑉)
9 hdmap1l6.v . . . . . . 7 𝑉 = (Base‘𝑈)
10 hdmap1l6.n . . . . . . 7 𝑁 = (LSpan‘𝑈)
119, 4, 10lspsncl 20912 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
126, 8, 11syl2anc 584 . . . . 5 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
13 hdmap1l6e.z . . . . . . 7 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
1413eldifad 3910 . . . . . 6 (𝜑𝑍𝑉)
159, 4, 10lspsncl 20912 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑍𝑉) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈))
166, 14, 15syl2anc 584 . . . . 5 (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈))
17 eqid 2733 . . . . . 6 (LSSum‘𝑈) = (LSSum‘𝑈)
184, 17lsmcl 21019 . . . . 5 ((𝑈 ∈ LMod ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈) ∧ (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈)) → ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∈ (LSubSp‘𝑈))
196, 12, 16, 18syl3anc 1373 . . . 4 (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∈ (LSubSp‘𝑈))
20 hdmap1l6cl.x . . . . . . . 8 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
2120eldifad 3910 . . . . . . 7 (𝜑𝑋𝑉)
22 hdmap1l6.p . . . . . . . . 9 + = (+g𝑈)
239, 22lmodvacl 20810 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑌 + 𝑍) ∈ 𝑉)
246, 8, 14, 23syl3anc 1373 . . . . . . 7 (𝜑 → (𝑌 + 𝑍) ∈ 𝑉)
25 hdmap1l6.s . . . . . . . 8 = (-g𝑈)
269, 25lmodvsubcl 20842 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝑋𝑉 ∧ (𝑌 + 𝑍) ∈ 𝑉) → (𝑋 (𝑌 + 𝑍)) ∈ 𝑉)
276, 21, 24, 26syl3anc 1373 . . . . . 6 (𝜑 → (𝑋 (𝑌 + 𝑍)) ∈ 𝑉)
289, 4, 10lspsncl 20912 . . . . . 6 ((𝑈 ∈ LMod ∧ (𝑋 (𝑌 + 𝑍)) ∈ 𝑉) → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) ∈ (LSubSp‘𝑈))
296, 27, 28syl2anc 584 . . . . 5 (𝜑 → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) ∈ (LSubSp‘𝑈))
309, 4, 10lspsncl 20912 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
316, 21, 30syl2anc 584 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
324, 17lsmcl 21019 . . . . 5 ((𝑈 ∈ LMod ∧ (𝑁‘{(𝑋 (𝑌 + 𝑍))}) ∈ (LSubSp‘𝑈) ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈)) → ((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})) ∈ (LSubSp‘𝑈))
336, 29, 31, 32syl3anc 1373 . . . 4 (𝜑 → ((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})) ∈ (LSubSp‘𝑈))
341, 2, 3, 4, 5, 19, 33mapdin 41782 . . 3 (𝜑 → (𝑀‘(((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})))) = ((𝑀‘((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) ∩ (𝑀‘((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})))))
35 hdmap1l6.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
36 eqid 2733 . . . . . 6 (LSSum‘𝐶) = (LSSum‘𝐶)
371, 2, 3, 4, 17, 35, 36, 5, 12, 16mapdlsm 41784 . . . . 5 (𝜑 → (𝑀‘((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) = ((𝑀‘(𝑁‘{𝑌}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍}))))
38 hdmap1l6.fg . . . . . . . 8 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
39 hdmap1l6c.o . . . . . . . . 9 0 = (0g𝑈)
40 hdmap1l6.d . . . . . . . . 9 𝐷 = (Base‘𝐶)
41 hdmap1l6.r . . . . . . . . 9 𝑅 = (-g𝐶)
42 hdmap1l6.l . . . . . . . . 9 𝐿 = (LSpan‘𝐶)
43 hdmap1l6.i . . . . . . . . 9 𝐼 = ((HDMap1‘𝐾)‘𝑊)
44 hdmap1l6.f . . . . . . . . 9 (𝜑𝐹𝐷)
45 hdmap1l6.mn . . . . . . . . . . 11 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
461, 3, 5dvhlvec 41229 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ LVec)
47 hdmap1l6.yz . . . . . . . . . . . . 13 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
48 hdmap1l6e.xn . . . . . . . . . . . . 13 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
499, 39, 10, 46, 8, 13, 21, 47, 48lspindp2 21074 . . . . . . . . . . . 12 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌})))
5049simpld 494 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
511, 3, 9, 39, 10, 35, 40, 42, 2, 43, 5, 44, 45, 50, 20, 8hdmap1cl 41924 . . . . . . . . . 10 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) ∈ 𝐷)
5238, 51eqeltrrd 2834 . . . . . . . . 9 (𝜑𝐺𝐷)
531, 3, 9, 25, 39, 10, 35, 40, 41, 42, 2, 43, 5, 20, 44, 7, 52, 50, 45hdmap1eq 41921 . . . . . . . 8 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)}))))
5438, 53mpbid 232 . . . . . . 7 (𝜑 → ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)})))
5554simpld 494 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}))
56 hdmap1l6.fe . . . . . . . 8 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
579, 39, 10, 46, 7, 14, 21, 47, 48lspindp1 21072 . . . . . . . . . . . 12 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}) ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})))
5857simpld 494 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
591, 3, 9, 39, 10, 35, 40, 42, 2, 43, 5, 44, 45, 58, 20, 14hdmap1cl 41924 . . . . . . . . . 10 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) ∈ 𝐷)
6056, 59eqeltrrd 2834 . . . . . . . . 9 (𝜑𝐸𝐷)
611, 3, 9, 25, 39, 10, 35, 40, 41, 42, 2, 43, 5, 20, 44, 13, 60, 58, 45hdmap1eq 41921 . . . . . . . 8 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸 ↔ ((𝑀‘(𝑁‘{𝑍})) = (𝐿‘{𝐸}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑍)})) = (𝐿‘{(𝐹𝑅𝐸)}))))
6256, 61mpbid 232 . . . . . . 7 (𝜑 → ((𝑀‘(𝑁‘{𝑍})) = (𝐿‘{𝐸}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑍)})) = (𝐿‘{(𝐹𝑅𝐸)})))
6362simpld 494 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑍})) = (𝐿‘{𝐸}))
6455, 63oveq12d 7370 . . . . 5 (𝜑 → ((𝑀‘(𝑁‘{𝑌}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍}))) = ((𝐿‘{𝐺})(LSSum‘𝐶)(𝐿‘{𝐸})))
6537, 64eqtrd 2768 . . . 4 (𝜑 → (𝑀‘((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) = ((𝐿‘{𝐺})(LSSum‘𝐶)(𝐿‘{𝐸})))
661, 2, 3, 4, 17, 35, 36, 5, 29, 31mapdlsm 41784 . . . . 5 (𝜑 → (𝑀‘((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋}))) = ((𝑀‘(𝑁‘{(𝑋 (𝑌 + 𝑍))}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑋}))))
67 hdmap1l6.a . . . . . . 7 = (+g𝐶)
68 hdmap1l6.q . . . . . . 7 𝑄 = (0g𝐶)
691, 3, 9, 22, 25, 39, 10, 35, 40, 67, 41, 68, 42, 2, 43, 5, 44, 20, 45, 7, 13, 48, 47, 38, 56hdmap1l6lem1 41927 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{(𝑋 (𝑌 + 𝑍))})) = (𝐿‘{(𝐹𝑅(𝐺 𝐸))}))
7069, 45oveq12d 7370 . . . . 5 (𝜑 → ((𝑀‘(𝑁‘{(𝑋 (𝑌 + 𝑍))}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑋}))) = ((𝐿‘{(𝐹𝑅(𝐺 𝐸))})(LSSum‘𝐶)(𝐿‘{𝐹})))
7166, 70eqtrd 2768 . . . 4 (𝜑 → (𝑀‘((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋}))) = ((𝐿‘{(𝐹𝑅(𝐺 𝐸))})(LSSum‘𝐶)(𝐿‘{𝐹})))
7265, 71ineq12d 4170 . . 3 (𝜑 → ((𝑀‘((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) ∩ (𝑀‘((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})))) = (((𝐿‘{𝐺})(LSSum‘𝐶)(𝐿‘{𝐸})) ∩ ((𝐿‘{(𝐹𝑅(𝐺 𝐸))})(LSSum‘𝐶)(𝐿‘{𝐹}))))
7334, 72eqtrd 2768 . 2 (𝜑 → (𝑀‘(((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})))) = (((𝐿‘{𝐺})(LSSum‘𝐶)(𝐿‘{𝐸})) ∩ ((𝐿‘{(𝐹𝑅(𝐺 𝐸))})(LSSum‘𝐶)(𝐿‘{𝐹}))))
749, 25, 39, 17, 10, 46, 21, 48, 47, 7, 13, 22baerlem5b 41835 . . 3 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) = (((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋}))))
7574fveq2d 6832 . 2 (𝜑 → (𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝑀‘(((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})))))
761, 35, 5lcdlvec 41711 . . 3 (𝜑𝐶 ∈ LVec)
771, 2, 3, 9, 10, 35, 40, 42, 5, 44, 45, 21, 8, 52, 55, 14, 60, 63, 48mapdindp 41791 . . 3 (𝜑 → ¬ 𝐹 ∈ (𝐿‘{𝐺, 𝐸}))
781, 2, 3, 9, 10, 35, 40, 42, 5, 52, 55, 8, 14, 60, 63, 47mapdncol 41790 . . 3 (𝜑 → (𝐿‘{𝐺}) ≠ (𝐿‘{𝐸}))
791, 2, 3, 9, 10, 35, 40, 42, 5, 52, 55, 39, 68, 7mapdn0 41789 . . 3 (𝜑𝐺 ∈ (𝐷 ∖ {𝑄}))
801, 2, 3, 9, 10, 35, 40, 42, 5, 60, 63, 39, 68, 13mapdn0 41789 . . 3 (𝜑𝐸 ∈ (𝐷 ∖ {𝑄}))
8140, 41, 68, 36, 42, 76, 44, 77, 78, 79, 80, 67baerlem5b 41835 . 2 (𝜑 → (𝐿‘{(𝐺 𝐸)}) = (((𝐿‘{𝐺})(LSSum‘𝐶)(𝐿‘{𝐸})) ∩ ((𝐿‘{(𝐹𝑅(𝐺 𝐸))})(LSSum‘𝐶)(𝐿‘{𝐹}))))
8273, 75, 813eqtr4d 2778 1 (𝜑 → (𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝐿‘{(𝐺 𝐸)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  cdif 3895  cin 3897  {csn 4575  {cpr 4577  cotp 4583  cfv 6486  (class class class)co 7352  Basecbs 17122  +gcplusg 17163  0gc0g 17345  -gcsg 18850  LSSumclsm 19548  LModclmod 20795  LSubSpclss 20866  LSpanclspn 20906  HLchlt 39470  LHypclh 40104  DVecHcdvh 41198  LCDualclcd 41706  mapdcmpd 41744  HDMap1chdma1 41911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-riotaBAD 39073
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-ot 4584  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-tpos 8162  df-undef 8209  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-0g 17347  df-mre 17490  df-mrc 17491  df-acs 17493  df-proset 18202  df-poset 18221  df-plt 18236  df-lub 18252  df-glb 18253  df-join 18254  df-meet 18255  df-p0 18331  df-p1 18332  df-lat 18340  df-clat 18407  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-grp 18851  df-minusg 18852  df-sbg 18853  df-subg 19038  df-cntz 19231  df-oppg 19260  df-lsm 19550  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-dvr 20321  df-nzr 20430  df-rlreg 20611  df-domn 20612  df-drng 20648  df-lmod 20797  df-lss 20867  df-lsp 20907  df-lvec 21039  df-lsatoms 39096  df-lshyp 39097  df-lcv 39139  df-lfl 39178  df-lkr 39206  df-ldual 39244  df-oposet 39296  df-ol 39298  df-oml 39299  df-covers 39386  df-ats 39387  df-atl 39418  df-cvlat 39442  df-hlat 39471  df-llines 39618  df-lplanes 39619  df-lvols 39620  df-lines 39621  df-psubsp 39623  df-pmap 39624  df-padd 39916  df-lhyp 40108  df-laut 40109  df-ldil 40224  df-ltrn 40225  df-trl 40279  df-tgrp 40863  df-tendo 40875  df-edring 40877  df-dveca 41123  df-disoa 41149  df-dvech 41199  df-dib 41259  df-dic 41293  df-dih 41349  df-doch 41468  df-djh 41515  df-lcdual 41707  df-mapd 41745  df-hdmap1 41913
This theorem is referenced by:  hdmap1l6a  41929
  Copyright terms: Public domain W3C validator