Proof of Theorem hdmap1l6lem2
Step | Hyp | Ref
| Expression |
1 | | hdmap1l6.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
2 | | hdmap1l6.m |
. . . 4
⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
3 | | hdmap1l6.u |
. . . 4
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
4 | | eqid 2738 |
. . . 4
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) |
5 | | hdmap1l6.k |
. . . 4
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
6 | 1, 3, 5 | dvhlmod 39051 |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ LMod) |
7 | | hdmap1l6e.y |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
8 | 7 | eldifad 3895 |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ 𝑉) |
9 | | hdmap1l6.v |
. . . . . . 7
⊢ 𝑉 = (Base‘𝑈) |
10 | | hdmap1l6.n |
. . . . . . 7
⊢ 𝑁 = (LSpan‘𝑈) |
11 | 9, 4, 10 | lspsncl 20154 |
. . . . . 6
⊢ ((𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
12 | 6, 8, 11 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
13 | | hdmap1l6e.z |
. . . . . . 7
⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
14 | 13 | eldifad 3895 |
. . . . . 6
⊢ (𝜑 → 𝑍 ∈ 𝑉) |
15 | 9, 4, 10 | lspsncl 20154 |
. . . . . 6
⊢ ((𝑈 ∈ LMod ∧ 𝑍 ∈ 𝑉) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈)) |
16 | 6, 14, 15 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈)) |
17 | | eqid 2738 |
. . . . . 6
⊢
(LSSum‘𝑈) =
(LSSum‘𝑈) |
18 | 4, 17 | lsmcl 20260 |
. . . . 5
⊢ ((𝑈 ∈ LMod ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈) ∧ (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈)) → ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∈ (LSubSp‘𝑈)) |
19 | 6, 12, 16, 18 | syl3anc 1369 |
. . . 4
⊢ (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∈ (LSubSp‘𝑈)) |
20 | | hdmap1l6cl.x |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
21 | 20 | eldifad 3895 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
22 | | hdmap1l6.p |
. . . . . . . . 9
⊢ + =
(+g‘𝑈) |
23 | 9, 22 | lmodvacl 20052 |
. . . . . . . 8
⊢ ((𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉) → (𝑌 + 𝑍) ∈ 𝑉) |
24 | 6, 8, 14, 23 | syl3anc 1369 |
. . . . . . 7
⊢ (𝜑 → (𝑌 + 𝑍) ∈ 𝑉) |
25 | | hdmap1l6.s |
. . . . . . . 8
⊢ − =
(-g‘𝑈) |
26 | 9, 25 | lmodvsubcl 20083 |
. . . . . . 7
⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ (𝑌 + 𝑍) ∈ 𝑉) → (𝑋 − (𝑌 + 𝑍)) ∈ 𝑉) |
27 | 6, 21, 24, 26 | syl3anc 1369 |
. . . . . 6
⊢ (𝜑 → (𝑋 − (𝑌 + 𝑍)) ∈ 𝑉) |
28 | 9, 4, 10 | lspsncl 20154 |
. . . . . 6
⊢ ((𝑈 ∈ LMod ∧ (𝑋 − (𝑌 + 𝑍)) ∈ 𝑉) → (𝑁‘{(𝑋 − (𝑌 + 𝑍))}) ∈ (LSubSp‘𝑈)) |
29 | 6, 27, 28 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → (𝑁‘{(𝑋 − (𝑌 + 𝑍))}) ∈ (LSubSp‘𝑈)) |
30 | 9, 4, 10 | lspsncl 20154 |
. . . . . 6
⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈)) |
31 | 6, 21, 30 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈)) |
32 | 4, 17 | lsmcl 20260 |
. . . . 5
⊢ ((𝑈 ∈ LMod ∧ (𝑁‘{(𝑋 − (𝑌 + 𝑍))}) ∈ (LSubSp‘𝑈) ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈)) → ((𝑁‘{(𝑋 − (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})) ∈ (LSubSp‘𝑈)) |
33 | 6, 29, 31, 32 | syl3anc 1369 |
. . . 4
⊢ (𝜑 → ((𝑁‘{(𝑋 − (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})) ∈ (LSubSp‘𝑈)) |
34 | 1, 2, 3, 4, 5, 19,
33 | mapdin 39603 |
. . 3
⊢ (𝜑 → (𝑀‘(((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 − (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})))) = ((𝑀‘((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) ∩ (𝑀‘((𝑁‘{(𝑋 − (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋}))))) |
35 | | hdmap1l6.c |
. . . . . 6
⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
36 | | eqid 2738 |
. . . . . 6
⊢
(LSSum‘𝐶) =
(LSSum‘𝐶) |
37 | 1, 2, 3, 4, 17, 35, 36, 5, 12, 16 | mapdlsm 39605 |
. . . . 5
⊢ (𝜑 → (𝑀‘((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) = ((𝑀‘(𝑁‘{𝑌}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍})))) |
38 | | hdmap1l6.fg |
. . . . . . . 8
⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) |
39 | | hdmap1l6c.o |
. . . . . . . . 9
⊢ 0 =
(0g‘𝑈) |
40 | | hdmap1l6.d |
. . . . . . . . 9
⊢ 𝐷 = (Base‘𝐶) |
41 | | hdmap1l6.r |
. . . . . . . . 9
⊢ 𝑅 = (-g‘𝐶) |
42 | | hdmap1l6.l |
. . . . . . . . 9
⊢ 𝐿 = (LSpan‘𝐶) |
43 | | hdmap1l6.i |
. . . . . . . . 9
⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) |
44 | | hdmap1l6.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ 𝐷) |
45 | | hdmap1l6.mn |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) |
46 | 1, 3, 5 | dvhlvec 39050 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑈 ∈ LVec) |
47 | | hdmap1l6.yz |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) |
48 | | hdmap1l6e.xn |
. . . . . . . . . . . . 13
⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
49 | 9, 39, 10, 46, 8, 13, 21, 47, 48 | lspindp2 20312 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌}))) |
50 | 49 | simpld 494 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
51 | 1, 3, 9, 39, 10, 35, 40, 42, 2, 43, 5, 44, 45, 50, 20, 8 | hdmap1cl 39745 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) ∈ 𝐷) |
52 | 38, 51 | eqeltrrd 2840 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ 𝐷) |
53 | 1, 3, 9, 25, 39, 10, 35, 40, 41, 42, 2, 43, 5, 20, 44, 7, 52, 50, 45 | hdmap1eq 39742 |
. . . . . . . 8
⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)})))) |
54 | 38, 53 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)}))) |
55 | 54 | simpld 494 |
. . . . . 6
⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺})) |
56 | | hdmap1l6.fe |
. . . . . . . 8
⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = 𝐸) |
57 | 9, 39, 10, 46, 7, 14, 21, 47, 48 | lspindp1 20310 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}) ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍}))) |
58 | 57 | simpld 494 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) |
59 | 1, 3, 9, 39, 10, 35, 40, 42, 2, 43, 5, 44, 45, 58, 20, 14 | hdmap1cl 39745 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) ∈ 𝐷) |
60 | 56, 59 | eqeltrrd 2840 |
. . . . . . . . 9
⊢ (𝜑 → 𝐸 ∈ 𝐷) |
61 | 1, 3, 9, 25, 39, 10, 35, 40, 41, 42, 2, 43, 5, 20, 44, 13, 60, 58, 45 | hdmap1eq 39742 |
. . . . . . . 8
⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑍〉) = 𝐸 ↔ ((𝑀‘(𝑁‘{𝑍})) = (𝐿‘{𝐸}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑍)})) = (𝐿‘{(𝐹𝑅𝐸)})))) |
62 | 56, 61 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → ((𝑀‘(𝑁‘{𝑍})) = (𝐿‘{𝐸}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑍)})) = (𝐿‘{(𝐹𝑅𝐸)}))) |
63 | 62 | simpld 494 |
. . . . . 6
⊢ (𝜑 → (𝑀‘(𝑁‘{𝑍})) = (𝐿‘{𝐸})) |
64 | 55, 63 | oveq12d 7273 |
. . . . 5
⊢ (𝜑 → ((𝑀‘(𝑁‘{𝑌}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍}))) = ((𝐿‘{𝐺})(LSSum‘𝐶)(𝐿‘{𝐸}))) |
65 | 37, 64 | eqtrd 2778 |
. . . 4
⊢ (𝜑 → (𝑀‘((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) = ((𝐿‘{𝐺})(LSSum‘𝐶)(𝐿‘{𝐸}))) |
66 | 1, 2, 3, 4, 17, 35, 36, 5, 29, 31 | mapdlsm 39605 |
. . . . 5
⊢ (𝜑 → (𝑀‘((𝑁‘{(𝑋 − (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋}))) = ((𝑀‘(𝑁‘{(𝑋 − (𝑌 + 𝑍))}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑋})))) |
67 | | hdmap1l6.a |
. . . . . . 7
⊢ ✚ =
(+g‘𝐶) |
68 | | hdmap1l6.q |
. . . . . . 7
⊢ 𝑄 = (0g‘𝐶) |
69 | 1, 3, 9, 22, 25, 39, 10, 35, 40, 67, 41, 68, 42, 2, 43, 5, 44, 20, 45, 7, 13, 48, 47, 38, 56 | hdmap1l6lem1 39748 |
. . . . . 6
⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − (𝑌 + 𝑍))})) = (𝐿‘{(𝐹𝑅(𝐺 ✚ 𝐸))})) |
70 | 69, 45 | oveq12d 7273 |
. . . . 5
⊢ (𝜑 → ((𝑀‘(𝑁‘{(𝑋 − (𝑌 + 𝑍))}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑋}))) = ((𝐿‘{(𝐹𝑅(𝐺 ✚ 𝐸))})(LSSum‘𝐶)(𝐿‘{𝐹}))) |
71 | 66, 70 | eqtrd 2778 |
. . . 4
⊢ (𝜑 → (𝑀‘((𝑁‘{(𝑋 − (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋}))) = ((𝐿‘{(𝐹𝑅(𝐺 ✚ 𝐸))})(LSSum‘𝐶)(𝐿‘{𝐹}))) |
72 | 65, 71 | ineq12d 4144 |
. . 3
⊢ (𝜑 → ((𝑀‘((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) ∩ (𝑀‘((𝑁‘{(𝑋 − (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})))) = (((𝐿‘{𝐺})(LSSum‘𝐶)(𝐿‘{𝐸})) ∩ ((𝐿‘{(𝐹𝑅(𝐺 ✚ 𝐸))})(LSSum‘𝐶)(𝐿‘{𝐹})))) |
73 | 34, 72 | eqtrd 2778 |
. 2
⊢ (𝜑 → (𝑀‘(((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 − (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})))) = (((𝐿‘{𝐺})(LSSum‘𝐶)(𝐿‘{𝐸})) ∩ ((𝐿‘{(𝐹𝑅(𝐺 ✚ 𝐸))})(LSSum‘𝐶)(𝐿‘{𝐹})))) |
74 | 9, 25, 39, 17, 10, 46, 21, 48, 47, 7, 13, 22 | baerlem5b 39656 |
. . 3
⊢ (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) = (((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 − (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})))) |
75 | 74 | fveq2d 6760 |
. 2
⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝑀‘(((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 − (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋}))))) |
76 | 1, 35, 5 | lcdlvec 39532 |
. . 3
⊢ (𝜑 → 𝐶 ∈ LVec) |
77 | 1, 2, 3, 9, 10, 35, 40, 42, 5, 44, 45, 21, 8, 52, 55, 14, 60, 63, 48 | mapdindp 39612 |
. . 3
⊢ (𝜑 → ¬ 𝐹 ∈ (𝐿‘{𝐺, 𝐸})) |
78 | 1, 2, 3, 9, 10, 35, 40, 42, 5, 52, 55, 8, 14, 60, 63, 47 | mapdncol 39611 |
. . 3
⊢ (𝜑 → (𝐿‘{𝐺}) ≠ (𝐿‘{𝐸})) |
79 | 1, 2, 3, 9, 10, 35, 40, 42, 5, 52, 55, 39, 68, 7 | mapdn0 39610 |
. . 3
⊢ (𝜑 → 𝐺 ∈ (𝐷 ∖ {𝑄})) |
80 | 1, 2, 3, 9, 10, 35, 40, 42, 5, 60, 63, 39, 68, 13 | mapdn0 39610 |
. . 3
⊢ (𝜑 → 𝐸 ∈ (𝐷 ∖ {𝑄})) |
81 | 40, 41, 68, 36, 42, 76, 44, 77, 78, 79, 80, 67 | baerlem5b 39656 |
. 2
⊢ (𝜑 → (𝐿‘{(𝐺 ✚ 𝐸)}) = (((𝐿‘{𝐺})(LSSum‘𝐶)(𝐿‘{𝐸})) ∩ ((𝐿‘{(𝐹𝑅(𝐺 ✚ 𝐸))})(LSSum‘𝐶)(𝐿‘{𝐹})))) |
82 | 73, 75, 81 | 3eqtr4d 2788 |
1
⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝐿‘{(𝐺 ✚ 𝐸)})) |