Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh6lem2N Structured version   Visualization version   GIF version

Theorem mapdh6lem2N 40474
Description: Lemma for mapdh6N 40487. Part (6) in [Baer] p. 47, lines 20-22. (Contributed by NM, 13-Apr-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdh.q 𝑄 = (0g𝐶)
mapdh.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh.h 𝐻 = (LHyp‘𝐾)
mapdh.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh.v 𝑉 = (Base‘𝑈)
mapdh.s = (-g𝑈)
mapdhc.o 0 = (0g𝑈)
mapdh.n 𝑁 = (LSpan‘𝑈)
mapdh.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh.d 𝐷 = (Base‘𝐶)
mapdh.r 𝑅 = (-g𝐶)
mapdh.j 𝐽 = (LSpan‘𝐶)
mapdh.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdhc.f (𝜑𝐹𝐷)
mapdh.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdhcl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh.p + = (+g𝑈)
mapdh.a = (+g𝐶)
mapdhe6.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdhe6.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
mapdhe6.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
mapdh6.yz (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
mapdh6.fg (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
mapdh6.fe (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
Assertion
Ref Expression
mapdh6lem2N (𝜑 → (𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝐽‘{(𝐺 𝐸)}))
Distinct variable groups:   𝑥,𝐷,   ,𝐹,𝑥   𝑥,𝐽   𝑥,𝑀   𝑥,𝑁   𝑥, 0   𝑥,𝑄   𝑥,𝑅   𝑥,   ,𝑋,𝑥   ,𝑌,𝑥   𝜑,   0 ,   𝐶,   𝐷,   ,𝐽   ,𝑀   ,𝑁   𝑅,   𝑈,   ,   ,𝐺,𝑥   ,𝐸   ,𝑍,𝑥   ,   ,𝐼   + ,,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   (𝑥)   𝑄()   𝑈(𝑥)   𝐸(𝑥)   𝐻(𝑥,)   𝐼(𝑥)   𝐾(𝑥,)   𝑉(𝑥,)   𝑊(𝑥,)

Proof of Theorem mapdh6lem2N
StepHypRef Expression
1 mapdh.h . . . 4 𝐻 = (LHyp‘𝐾)
2 mapdh.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
3 mapdh.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 eqid 2732 . . . 4 (LSubSp‘𝑈) = (LSubSp‘𝑈)
5 mapdh.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
61, 3, 5dvhlmod 39850 . . . . 5 (𝜑𝑈 ∈ LMod)
7 mapdhe6.y . . . . . . 7 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
87eldifad 3957 . . . . . 6 (𝜑𝑌𝑉)
9 mapdh.v . . . . . . 7 𝑉 = (Base‘𝑈)
10 mapdh.n . . . . . . 7 𝑁 = (LSpan‘𝑈)
119, 4, 10lspsncl 20539 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
126, 8, 11syl2anc 584 . . . . 5 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
13 mapdhe6.z . . . . . . 7 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
1413eldifad 3957 . . . . . 6 (𝜑𝑍𝑉)
159, 4, 10lspsncl 20539 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑍𝑉) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈))
166, 14, 15syl2anc 584 . . . . 5 (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈))
17 eqid 2732 . . . . . 6 (LSSum‘𝑈) = (LSSum‘𝑈)
184, 17lsmcl 20645 . . . . 5 ((𝑈 ∈ LMod ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈) ∧ (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈)) → ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∈ (LSubSp‘𝑈))
196, 12, 16, 18syl3anc 1371 . . . 4 (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∈ (LSubSp‘𝑈))
20 mapdhcl.x . . . . . . . 8 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
2120eldifad 3957 . . . . . . 7 (𝜑𝑋𝑉)
22 mapdh.p . . . . . . . . 9 + = (+g𝑈)
239, 22lmodvacl 20437 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑌 + 𝑍) ∈ 𝑉)
246, 8, 14, 23syl3anc 1371 . . . . . . 7 (𝜑 → (𝑌 + 𝑍) ∈ 𝑉)
25 mapdh.s . . . . . . . 8 = (-g𝑈)
269, 25lmodvsubcl 20468 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝑋𝑉 ∧ (𝑌 + 𝑍) ∈ 𝑉) → (𝑋 (𝑌 + 𝑍)) ∈ 𝑉)
276, 21, 24, 26syl3anc 1371 . . . . . 6 (𝜑 → (𝑋 (𝑌 + 𝑍)) ∈ 𝑉)
289, 4, 10lspsncl 20539 . . . . . 6 ((𝑈 ∈ LMod ∧ (𝑋 (𝑌 + 𝑍)) ∈ 𝑉) → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) ∈ (LSubSp‘𝑈))
296, 27, 28syl2anc 584 . . . . 5 (𝜑 → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) ∈ (LSubSp‘𝑈))
309, 4, 10lspsncl 20539 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
316, 21, 30syl2anc 584 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
324, 17lsmcl 20645 . . . . 5 ((𝑈 ∈ LMod ∧ (𝑁‘{(𝑋 (𝑌 + 𝑍))}) ∈ (LSubSp‘𝑈) ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈)) → ((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})) ∈ (LSubSp‘𝑈))
336, 29, 31, 32syl3anc 1371 . . . 4 (𝜑 → ((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})) ∈ (LSubSp‘𝑈))
341, 2, 3, 4, 5, 19, 33mapdin 40402 . . 3 (𝜑 → (𝑀‘(((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})))) = ((𝑀‘((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) ∩ (𝑀‘((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})))))
35 mapdh.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
36 eqid 2732 . . . . . 6 (LSSum‘𝐶) = (LSSum‘𝐶)
371, 2, 3, 4, 17, 35, 36, 5, 12, 16mapdlsm 40404 . . . . 5 (𝜑 → (𝑀‘((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) = ((𝑀‘(𝑁‘{𝑌}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍}))))
38 mapdh6.fg . . . . . . . 8 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
39 mapdh.q . . . . . . . . 9 𝑄 = (0g𝐶)
40 mapdh.i . . . . . . . . 9 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
41 mapdhc.o . . . . . . . . 9 0 = (0g𝑈)
42 mapdh.d . . . . . . . . 9 𝐷 = (Base‘𝐶)
43 mapdh.r . . . . . . . . 9 𝑅 = (-g𝐶)
44 mapdh.j . . . . . . . . 9 𝐽 = (LSpan‘𝐶)
45 mapdhc.f . . . . . . . . 9 (𝜑𝐹𝐷)
46 mapdh.mn . . . . . . . . 9 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
471, 3, 5dvhlvec 39849 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ LVec)
48 mapdh6.yz . . . . . . . . . . . . 13 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
49 mapdhe6.xn . . . . . . . . . . . . 13 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
509, 41, 10, 47, 8, 13, 21, 48, 49lspindp2 20699 . . . . . . . . . . . 12 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌})))
5150simpld 495 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
5239, 40, 1, 2, 3, 9, 25, 41, 10, 35, 42, 43, 44, 5, 45, 46, 20, 8, 51mapdhcl 40467 . . . . . . . . . 10 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) ∈ 𝐷)
5338, 52eqeltrrd 2834 . . . . . . . . 9 (𝜑𝐺𝐷)
5439, 40, 1, 2, 3, 9, 25, 41, 10, 35, 42, 43, 44, 5, 45, 46, 20, 7, 53, 51mapdheq 40468 . . . . . . . 8 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))))
5538, 54mpbid 231 . . . . . . 7 (𝜑 → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)})))
5655simpld 495 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}))
57 mapdh6.fe . . . . . . . 8 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
589, 41, 10, 47, 7, 14, 21, 48, 49lspindp1 20697 . . . . . . . . . . . 12 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}) ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})))
5958simpld 495 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
6039, 40, 1, 2, 3, 9, 25, 41, 10, 35, 42, 43, 44, 5, 45, 46, 20, 14, 59mapdhcl 40467 . . . . . . . . . 10 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) ∈ 𝐷)
6157, 60eqeltrrd 2834 . . . . . . . . 9 (𝜑𝐸𝐷)
6239, 40, 1, 2, 3, 9, 25, 41, 10, 35, 42, 43, 44, 5, 45, 46, 20, 13, 61, 59mapdheq 40468 . . . . . . . 8 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸 ↔ ((𝑀‘(𝑁‘{𝑍})) = (𝐽‘{𝐸}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑍)})) = (𝐽‘{(𝐹𝑅𝐸)}))))
6357, 62mpbid 231 . . . . . . 7 (𝜑 → ((𝑀‘(𝑁‘{𝑍})) = (𝐽‘{𝐸}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑍)})) = (𝐽‘{(𝐹𝑅𝐸)})))
6463simpld 495 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑍})) = (𝐽‘{𝐸}))
6556, 64oveq12d 7412 . . . . 5 (𝜑 → ((𝑀‘(𝑁‘{𝑌}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍}))) = ((𝐽‘{𝐺})(LSSum‘𝐶)(𝐽‘{𝐸})))
6637, 65eqtrd 2772 . . . 4 (𝜑 → (𝑀‘((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) = ((𝐽‘{𝐺})(LSSum‘𝐶)(𝐽‘{𝐸})))
671, 2, 3, 4, 17, 35, 36, 5, 29, 31mapdlsm 40404 . . . . 5 (𝜑 → (𝑀‘((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋}))) = ((𝑀‘(𝑁‘{(𝑋 (𝑌 + 𝑍))}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑋}))))
68 mapdh.a . . . . . . 7 = (+g𝐶)
6939, 40, 1, 2, 3, 9, 25, 41, 10, 35, 42, 43, 44, 5, 45, 46, 20, 22, 68, 7, 13, 49, 48, 38, 57mapdh6lem1N 40473 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{(𝑋 (𝑌 + 𝑍))})) = (𝐽‘{(𝐹𝑅(𝐺 𝐸))}))
7069, 46oveq12d 7412 . . . . 5 (𝜑 → ((𝑀‘(𝑁‘{(𝑋 (𝑌 + 𝑍))}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑋}))) = ((𝐽‘{(𝐹𝑅(𝐺 𝐸))})(LSSum‘𝐶)(𝐽‘{𝐹})))
7167, 70eqtrd 2772 . . . 4 (𝜑 → (𝑀‘((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋}))) = ((𝐽‘{(𝐹𝑅(𝐺 𝐸))})(LSSum‘𝐶)(𝐽‘{𝐹})))
7266, 71ineq12d 4210 . . 3 (𝜑 → ((𝑀‘((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) ∩ (𝑀‘((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})))) = (((𝐽‘{𝐺})(LSSum‘𝐶)(𝐽‘{𝐸})) ∩ ((𝐽‘{(𝐹𝑅(𝐺 𝐸))})(LSSum‘𝐶)(𝐽‘{𝐹}))))
7334, 72eqtrd 2772 . 2 (𝜑 → (𝑀‘(((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})))) = (((𝐽‘{𝐺})(LSSum‘𝐶)(𝐽‘{𝐸})) ∩ ((𝐽‘{(𝐹𝑅(𝐺 𝐸))})(LSSum‘𝐶)(𝐽‘{𝐹}))))
749, 25, 41, 17, 10, 47, 21, 49, 48, 7, 13, 22baerlem5b 40455 . . 3 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) = (((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋}))))
7574fveq2d 6883 . 2 (𝜑 → (𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝑀‘(((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})))))
761, 35, 5lcdlvec 40331 . . 3 (𝜑𝐶 ∈ LVec)
771, 2, 3, 9, 10, 35, 42, 44, 5, 45, 46, 21, 8, 53, 56, 14, 61, 64, 49mapdindp 40411 . . 3 (𝜑 → ¬ 𝐹 ∈ (𝐽‘{𝐺, 𝐸}))
781, 2, 3, 9, 10, 35, 42, 44, 5, 53, 56, 8, 14, 61, 64, 48mapdncol 40410 . . 3 (𝜑 → (𝐽‘{𝐺}) ≠ (𝐽‘{𝐸}))
791, 2, 3, 9, 10, 35, 42, 44, 5, 53, 56, 41, 39, 7mapdn0 40409 . . 3 (𝜑𝐺 ∈ (𝐷 ∖ {𝑄}))
801, 2, 3, 9, 10, 35, 42, 44, 5, 61, 64, 41, 39, 13mapdn0 40409 . . 3 (𝜑𝐸 ∈ (𝐷 ∖ {𝑄}))
8142, 43, 39, 36, 44, 76, 45, 77, 78, 79, 80, 68baerlem5b 40455 . 2 (𝜑 → (𝐽‘{(𝐺 𝐸)}) = (((𝐽‘{𝐺})(LSSum‘𝐶)(𝐽‘{𝐸})) ∩ ((𝐽‘{(𝐹𝑅(𝐺 𝐸))})(LSSum‘𝐶)(𝐽‘{𝐹}))))
8273, 75, 813eqtr4d 2782 1 (𝜑 → (𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝐽‘{(𝐺 𝐸)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2940  Vcvv 3474  cdif 3942  cin 3944  ifcif 4523  {csn 4623  {cpr 4625  cotp 4631  cmpt 5225  cfv 6533  crio 7349  (class class class)co 7394  1st c1st 7957  2nd c2nd 7958  Basecbs 17128  +gcplusg 17181  0gc0g 17369  -gcsg 18798  LSSumclsm 19468  LModclmod 20422  LSubSpclss 20493  LSpanclspn 20533  HLchlt 38089  LHypclh 38724  DVecHcdvh 39818  LCDualclcd 40326  mapdcmpd 40364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709  ax-cnex 11150  ax-resscn 11151  ax-1cn 11152  ax-icn 11153  ax-addcl 11154  ax-addrcl 11155  ax-mulcl 11156  ax-mulrcl 11157  ax-mulcom 11158  ax-addass 11159  ax-mulass 11160  ax-distr 11161  ax-i2m1 11162  ax-1ne0 11163  ax-1rid 11164  ax-rnegex 11165  ax-rrecex 11166  ax-cnre 11167  ax-pre-lttri 11168  ax-pre-lttrn 11169  ax-pre-ltadd 11170  ax-pre-mulgt0 11171  ax-riotaBAD 37692
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-ot 4632  df-uni 4903  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7350  df-ov 7397  df-oprab 7398  df-mpo 7399  df-of 7654  df-om 7840  df-1st 7959  df-2nd 7960  df-tpos 8195  df-undef 8242  df-frecs 8250  df-wrecs 8281  df-recs 8355  df-rdg 8394  df-1o 8450  df-er 8688  df-map 8807  df-en 8925  df-dom 8926  df-sdom 8927  df-fin 8928  df-pnf 11234  df-mnf 11235  df-xr 11236  df-ltxr 11237  df-le 11238  df-sub 11430  df-neg 11431  df-nn 12197  df-2 12259  df-3 12260  df-4 12261  df-5 12262  df-6 12263  df-n0 12457  df-z 12543  df-uz 12807  df-fz 13469  df-struct 17064  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17129  df-ress 17158  df-plusg 17194  df-mulr 17195  df-sca 17197  df-vsca 17198  df-0g 17371  df-mre 17514  df-mrc 17515  df-acs 17517  df-proset 18232  df-poset 18250  df-plt 18267  df-lub 18283  df-glb 18284  df-join 18285  df-meet 18286  df-p0 18362  df-p1 18363  df-lat 18369  df-clat 18436  df-mgm 18545  df-sgrp 18594  df-mnd 18605  df-submnd 18650  df-grp 18799  df-minusg 18800  df-sbg 18801  df-subg 18977  df-cntz 19149  df-oppg 19176  df-lsm 19470  df-cmn 19616  df-abl 19617  df-mgp 19949  df-ur 19966  df-ring 20018  df-oppr 20104  df-dvdsr 20125  df-unit 20126  df-invr 20156  df-dvr 20167  df-drng 20269  df-lmod 20424  df-lss 20494  df-lsp 20534  df-lvec 20665  df-lsatoms 37715  df-lshyp 37716  df-lcv 37758  df-lfl 37797  df-lkr 37825  df-ldual 37863  df-oposet 37915  df-ol 37917  df-oml 37918  df-covers 38005  df-ats 38006  df-atl 38037  df-cvlat 38061  df-hlat 38090  df-llines 38238  df-lplanes 38239  df-lvols 38240  df-lines 38241  df-psubsp 38243  df-pmap 38244  df-padd 38536  df-lhyp 38728  df-laut 38729  df-ldil 38844  df-ltrn 38845  df-trl 38899  df-tgrp 39483  df-tendo 39495  df-edring 39497  df-dveca 39743  df-disoa 39769  df-dvech 39819  df-dib 39879  df-dic 39913  df-dih 39969  df-doch 40088  df-djh 40135  df-lcdual 40327  df-mapd 40365
This theorem is referenced by:  mapdh6aN  40475
  Copyright terms: Public domain W3C validator