Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh6lem2N Structured version   Visualization version   GIF version

Theorem mapdh6lem2N 41713
Description: Lemma for mapdh6N 41726. Part (6) in [Baer] p. 47, lines 20-22. (Contributed by NM, 13-Apr-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdh.q 𝑄 = (0g𝐶)
mapdh.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh.h 𝐻 = (LHyp‘𝐾)
mapdh.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh.v 𝑉 = (Base‘𝑈)
mapdh.s = (-g𝑈)
mapdhc.o 0 = (0g𝑈)
mapdh.n 𝑁 = (LSpan‘𝑈)
mapdh.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh.d 𝐷 = (Base‘𝐶)
mapdh.r 𝑅 = (-g𝐶)
mapdh.j 𝐽 = (LSpan‘𝐶)
mapdh.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdhc.f (𝜑𝐹𝐷)
mapdh.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdhcl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh.p + = (+g𝑈)
mapdh.a = (+g𝐶)
mapdhe6.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdhe6.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
mapdhe6.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
mapdh6.yz (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
mapdh6.fg (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
mapdh6.fe (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
Assertion
Ref Expression
mapdh6lem2N (𝜑 → (𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝐽‘{(𝐺 𝐸)}))
Distinct variable groups:   𝑥,𝐷,   ,𝐹,𝑥   𝑥,𝐽   𝑥,𝑀   𝑥,𝑁   𝑥, 0   𝑥,𝑄   𝑥,𝑅   𝑥,   ,𝑋,𝑥   ,𝑌,𝑥   𝜑,   0 ,   𝐶,   𝐷,   ,𝐽   ,𝑀   ,𝑁   𝑅,   𝑈,   ,   ,𝐺,𝑥   ,𝐸   ,𝑍,𝑥   ,   ,𝐼   + ,,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   (𝑥)   𝑄()   𝑈(𝑥)   𝐸(𝑥)   𝐻(𝑥,)   𝐼(𝑥)   𝐾(𝑥,)   𝑉(𝑥,)   𝑊(𝑥,)

Proof of Theorem mapdh6lem2N
StepHypRef Expression
1 mapdh.h . . . 4 𝐻 = (LHyp‘𝐾)
2 mapdh.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
3 mapdh.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 eqid 2729 . . . 4 (LSubSp‘𝑈) = (LSubSp‘𝑈)
5 mapdh.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
61, 3, 5dvhlmod 41089 . . . . 5 (𝜑𝑈 ∈ LMod)
7 mapdhe6.y . . . . . . 7 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
87eldifad 3915 . . . . . 6 (𝜑𝑌𝑉)
9 mapdh.v . . . . . . 7 𝑉 = (Base‘𝑈)
10 mapdh.n . . . . . . 7 𝑁 = (LSpan‘𝑈)
119, 4, 10lspsncl 20880 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
126, 8, 11syl2anc 584 . . . . 5 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
13 mapdhe6.z . . . . . . 7 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
1413eldifad 3915 . . . . . 6 (𝜑𝑍𝑉)
159, 4, 10lspsncl 20880 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑍𝑉) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈))
166, 14, 15syl2anc 584 . . . . 5 (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈))
17 eqid 2729 . . . . . 6 (LSSum‘𝑈) = (LSSum‘𝑈)
184, 17lsmcl 20987 . . . . 5 ((𝑈 ∈ LMod ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈) ∧ (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈)) → ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∈ (LSubSp‘𝑈))
196, 12, 16, 18syl3anc 1373 . . . 4 (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∈ (LSubSp‘𝑈))
20 mapdhcl.x . . . . . . . 8 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
2120eldifad 3915 . . . . . . 7 (𝜑𝑋𝑉)
22 mapdh.p . . . . . . . . 9 + = (+g𝑈)
239, 22lmodvacl 20778 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑌 + 𝑍) ∈ 𝑉)
246, 8, 14, 23syl3anc 1373 . . . . . . 7 (𝜑 → (𝑌 + 𝑍) ∈ 𝑉)
25 mapdh.s . . . . . . . 8 = (-g𝑈)
269, 25lmodvsubcl 20810 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝑋𝑉 ∧ (𝑌 + 𝑍) ∈ 𝑉) → (𝑋 (𝑌 + 𝑍)) ∈ 𝑉)
276, 21, 24, 26syl3anc 1373 . . . . . 6 (𝜑 → (𝑋 (𝑌 + 𝑍)) ∈ 𝑉)
289, 4, 10lspsncl 20880 . . . . . 6 ((𝑈 ∈ LMod ∧ (𝑋 (𝑌 + 𝑍)) ∈ 𝑉) → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) ∈ (LSubSp‘𝑈))
296, 27, 28syl2anc 584 . . . . 5 (𝜑 → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) ∈ (LSubSp‘𝑈))
309, 4, 10lspsncl 20880 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
316, 21, 30syl2anc 584 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
324, 17lsmcl 20987 . . . . 5 ((𝑈 ∈ LMod ∧ (𝑁‘{(𝑋 (𝑌 + 𝑍))}) ∈ (LSubSp‘𝑈) ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈)) → ((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})) ∈ (LSubSp‘𝑈))
336, 29, 31, 32syl3anc 1373 . . . 4 (𝜑 → ((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})) ∈ (LSubSp‘𝑈))
341, 2, 3, 4, 5, 19, 33mapdin 41641 . . 3 (𝜑 → (𝑀‘(((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})))) = ((𝑀‘((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) ∩ (𝑀‘((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})))))
35 mapdh.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
36 eqid 2729 . . . . . 6 (LSSum‘𝐶) = (LSSum‘𝐶)
371, 2, 3, 4, 17, 35, 36, 5, 12, 16mapdlsm 41643 . . . . 5 (𝜑 → (𝑀‘((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) = ((𝑀‘(𝑁‘{𝑌}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍}))))
38 mapdh6.fg . . . . . . . 8 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
39 mapdh.q . . . . . . . . 9 𝑄 = (0g𝐶)
40 mapdh.i . . . . . . . . 9 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
41 mapdhc.o . . . . . . . . 9 0 = (0g𝑈)
42 mapdh.d . . . . . . . . 9 𝐷 = (Base‘𝐶)
43 mapdh.r . . . . . . . . 9 𝑅 = (-g𝐶)
44 mapdh.j . . . . . . . . 9 𝐽 = (LSpan‘𝐶)
45 mapdhc.f . . . . . . . . 9 (𝜑𝐹𝐷)
46 mapdh.mn . . . . . . . . 9 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
471, 3, 5dvhlvec 41088 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ LVec)
48 mapdh6.yz . . . . . . . . . . . . 13 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
49 mapdhe6.xn . . . . . . . . . . . . 13 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
509, 41, 10, 47, 8, 13, 21, 48, 49lspindp2 21042 . . . . . . . . . . . 12 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌})))
5150simpld 494 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
5239, 40, 1, 2, 3, 9, 25, 41, 10, 35, 42, 43, 44, 5, 45, 46, 20, 8, 51mapdhcl 41706 . . . . . . . . . 10 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) ∈ 𝐷)
5338, 52eqeltrrd 2829 . . . . . . . . 9 (𝜑𝐺𝐷)
5439, 40, 1, 2, 3, 9, 25, 41, 10, 35, 42, 43, 44, 5, 45, 46, 20, 7, 53, 51mapdheq 41707 . . . . . . . 8 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))))
5538, 54mpbid 232 . . . . . . 7 (𝜑 → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)})))
5655simpld 494 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}))
57 mapdh6.fe . . . . . . . 8 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
589, 41, 10, 47, 7, 14, 21, 48, 49lspindp1 21040 . . . . . . . . . . . 12 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}) ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})))
5958simpld 494 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
6039, 40, 1, 2, 3, 9, 25, 41, 10, 35, 42, 43, 44, 5, 45, 46, 20, 14, 59mapdhcl 41706 . . . . . . . . . 10 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) ∈ 𝐷)
6157, 60eqeltrrd 2829 . . . . . . . . 9 (𝜑𝐸𝐷)
6239, 40, 1, 2, 3, 9, 25, 41, 10, 35, 42, 43, 44, 5, 45, 46, 20, 13, 61, 59mapdheq 41707 . . . . . . . 8 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸 ↔ ((𝑀‘(𝑁‘{𝑍})) = (𝐽‘{𝐸}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑍)})) = (𝐽‘{(𝐹𝑅𝐸)}))))
6357, 62mpbid 232 . . . . . . 7 (𝜑 → ((𝑀‘(𝑁‘{𝑍})) = (𝐽‘{𝐸}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑍)})) = (𝐽‘{(𝐹𝑅𝐸)})))
6463simpld 494 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑍})) = (𝐽‘{𝐸}))
6556, 64oveq12d 7367 . . . . 5 (𝜑 → ((𝑀‘(𝑁‘{𝑌}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍}))) = ((𝐽‘{𝐺})(LSSum‘𝐶)(𝐽‘{𝐸})))
6637, 65eqtrd 2764 . . . 4 (𝜑 → (𝑀‘((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) = ((𝐽‘{𝐺})(LSSum‘𝐶)(𝐽‘{𝐸})))
671, 2, 3, 4, 17, 35, 36, 5, 29, 31mapdlsm 41643 . . . . 5 (𝜑 → (𝑀‘((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋}))) = ((𝑀‘(𝑁‘{(𝑋 (𝑌 + 𝑍))}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑋}))))
68 mapdh.a . . . . . . 7 = (+g𝐶)
6939, 40, 1, 2, 3, 9, 25, 41, 10, 35, 42, 43, 44, 5, 45, 46, 20, 22, 68, 7, 13, 49, 48, 38, 57mapdh6lem1N 41712 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{(𝑋 (𝑌 + 𝑍))})) = (𝐽‘{(𝐹𝑅(𝐺 𝐸))}))
7069, 46oveq12d 7367 . . . . 5 (𝜑 → ((𝑀‘(𝑁‘{(𝑋 (𝑌 + 𝑍))}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑋}))) = ((𝐽‘{(𝐹𝑅(𝐺 𝐸))})(LSSum‘𝐶)(𝐽‘{𝐹})))
7167, 70eqtrd 2764 . . . 4 (𝜑 → (𝑀‘((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋}))) = ((𝐽‘{(𝐹𝑅(𝐺 𝐸))})(LSSum‘𝐶)(𝐽‘{𝐹})))
7266, 71ineq12d 4172 . . 3 (𝜑 → ((𝑀‘((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) ∩ (𝑀‘((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})))) = (((𝐽‘{𝐺})(LSSum‘𝐶)(𝐽‘{𝐸})) ∩ ((𝐽‘{(𝐹𝑅(𝐺 𝐸))})(LSSum‘𝐶)(𝐽‘{𝐹}))))
7334, 72eqtrd 2764 . 2 (𝜑 → (𝑀‘(((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})))) = (((𝐽‘{𝐺})(LSSum‘𝐶)(𝐽‘{𝐸})) ∩ ((𝐽‘{(𝐹𝑅(𝐺 𝐸))})(LSSum‘𝐶)(𝐽‘{𝐹}))))
749, 25, 41, 17, 10, 47, 21, 49, 48, 7, 13, 22baerlem5b 41694 . . 3 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) = (((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋}))))
7574fveq2d 6826 . 2 (𝜑 → (𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝑀‘(((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})))))
761, 35, 5lcdlvec 41570 . . 3 (𝜑𝐶 ∈ LVec)
771, 2, 3, 9, 10, 35, 42, 44, 5, 45, 46, 21, 8, 53, 56, 14, 61, 64, 49mapdindp 41650 . . 3 (𝜑 → ¬ 𝐹 ∈ (𝐽‘{𝐺, 𝐸}))
781, 2, 3, 9, 10, 35, 42, 44, 5, 53, 56, 8, 14, 61, 64, 48mapdncol 41649 . . 3 (𝜑 → (𝐽‘{𝐺}) ≠ (𝐽‘{𝐸}))
791, 2, 3, 9, 10, 35, 42, 44, 5, 53, 56, 41, 39, 7mapdn0 41648 . . 3 (𝜑𝐺 ∈ (𝐷 ∖ {𝑄}))
801, 2, 3, 9, 10, 35, 42, 44, 5, 61, 64, 41, 39, 13mapdn0 41648 . . 3 (𝜑𝐸 ∈ (𝐷 ∖ {𝑄}))
8142, 43, 39, 36, 44, 76, 45, 77, 78, 79, 80, 68baerlem5b 41694 . 2 (𝜑 → (𝐽‘{(𝐺 𝐸)}) = (((𝐽‘{𝐺})(LSSum‘𝐶)(𝐽‘{𝐸})) ∩ ((𝐽‘{(𝐹𝑅(𝐺 𝐸))})(LSSum‘𝐶)(𝐽‘{𝐹}))))
8273, 75, 813eqtr4d 2774 1 (𝜑 → (𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝐽‘{(𝐺 𝐸)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3436  cdif 3900  cin 3902  ifcif 4476  {csn 4577  {cpr 4579  cotp 4585  cmpt 5173  cfv 6482  crio 7305  (class class class)co 7349  1st c1st 7922  2nd c2nd 7923  Basecbs 17120  +gcplusg 17161  0gc0g 17343  -gcsg 18814  LSSumclsm 19513  LModclmod 20763  LSubSpclss 20834  LSpanclspn 20874  HLchlt 39329  LHypclh 39963  DVecHcdvh 41057  LCDualclcd 41565  mapdcmpd 41603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-riotaBAD 38932
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-tpos 8159  df-undef 8206  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-0g 17345  df-mre 17488  df-mrc 17489  df-acs 17491  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-subg 19002  df-cntz 19196  df-oppg 19225  df-lsm 19515  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-nzr 20398  df-rlreg 20579  df-domn 20580  df-drng 20616  df-lmod 20765  df-lss 20835  df-lsp 20875  df-lvec 21007  df-lsatoms 38955  df-lshyp 38956  df-lcv 38998  df-lfl 39037  df-lkr 39065  df-ldual 39103  df-oposet 39155  df-ol 39157  df-oml 39158  df-covers 39245  df-ats 39246  df-atl 39277  df-cvlat 39301  df-hlat 39330  df-llines 39477  df-lplanes 39478  df-lvols 39479  df-lines 39480  df-psubsp 39482  df-pmap 39483  df-padd 39775  df-lhyp 39967  df-laut 39968  df-ldil 40083  df-ltrn 40084  df-trl 40138  df-tgrp 40722  df-tendo 40734  df-edring 40736  df-dveca 40982  df-disoa 41008  df-dvech 41058  df-dib 41118  df-dic 41152  df-dih 41208  df-doch 41327  df-djh 41374  df-lcdual 41566  df-mapd 41604
This theorem is referenced by:  mapdh6aN  41714
  Copyright terms: Public domain W3C validator