Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh6lem2N Structured version   Visualization version   GIF version

Theorem mapdh6lem2N 41701
Description: Lemma for mapdh6N 41714. Part (6) in [Baer] p. 47, lines 20-22. (Contributed by NM, 13-Apr-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdh.q 𝑄 = (0g𝐶)
mapdh.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh.h 𝐻 = (LHyp‘𝐾)
mapdh.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh.v 𝑉 = (Base‘𝑈)
mapdh.s = (-g𝑈)
mapdhc.o 0 = (0g𝑈)
mapdh.n 𝑁 = (LSpan‘𝑈)
mapdh.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh.d 𝐷 = (Base‘𝐶)
mapdh.r 𝑅 = (-g𝐶)
mapdh.j 𝐽 = (LSpan‘𝐶)
mapdh.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdhc.f (𝜑𝐹𝐷)
mapdh.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdhcl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh.p + = (+g𝑈)
mapdh.a = (+g𝐶)
mapdhe6.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdhe6.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
mapdhe6.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
mapdh6.yz (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
mapdh6.fg (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
mapdh6.fe (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
Assertion
Ref Expression
mapdh6lem2N (𝜑 → (𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝐽‘{(𝐺 𝐸)}))
Distinct variable groups:   𝑥,𝐷,   ,𝐹,𝑥   𝑥,𝐽   𝑥,𝑀   𝑥,𝑁   𝑥, 0   𝑥,𝑄   𝑥,𝑅   𝑥,   ,𝑋,𝑥   ,𝑌,𝑥   𝜑,   0 ,   𝐶,   𝐷,   ,𝐽   ,𝑀   ,𝑁   𝑅,   𝑈,   ,   ,𝐺,𝑥   ,𝐸   ,𝑍,𝑥   ,   ,𝐼   + ,,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   (𝑥)   𝑄()   𝑈(𝑥)   𝐸(𝑥)   𝐻(𝑥,)   𝐼(𝑥)   𝐾(𝑥,)   𝑉(𝑥,)   𝑊(𝑥,)

Proof of Theorem mapdh6lem2N
StepHypRef Expression
1 mapdh.h . . . 4 𝐻 = (LHyp‘𝐾)
2 mapdh.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
3 mapdh.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 eqid 2729 . . . 4 (LSubSp‘𝑈) = (LSubSp‘𝑈)
5 mapdh.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
61, 3, 5dvhlmod 41077 . . . . 5 (𝜑𝑈 ∈ LMod)
7 mapdhe6.y . . . . . . 7 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
87eldifad 3923 . . . . . 6 (𝜑𝑌𝑉)
9 mapdh.v . . . . . . 7 𝑉 = (Base‘𝑈)
10 mapdh.n . . . . . . 7 𝑁 = (LSpan‘𝑈)
119, 4, 10lspsncl 20859 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
126, 8, 11syl2anc 584 . . . . 5 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
13 mapdhe6.z . . . . . . 7 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
1413eldifad 3923 . . . . . 6 (𝜑𝑍𝑉)
159, 4, 10lspsncl 20859 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑍𝑉) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈))
166, 14, 15syl2anc 584 . . . . 5 (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈))
17 eqid 2729 . . . . . 6 (LSSum‘𝑈) = (LSSum‘𝑈)
184, 17lsmcl 20966 . . . . 5 ((𝑈 ∈ LMod ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈) ∧ (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈)) → ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∈ (LSubSp‘𝑈))
196, 12, 16, 18syl3anc 1373 . . . 4 (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∈ (LSubSp‘𝑈))
20 mapdhcl.x . . . . . . . 8 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
2120eldifad 3923 . . . . . . 7 (𝜑𝑋𝑉)
22 mapdh.p . . . . . . . . 9 + = (+g𝑈)
239, 22lmodvacl 20757 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑌 + 𝑍) ∈ 𝑉)
246, 8, 14, 23syl3anc 1373 . . . . . . 7 (𝜑 → (𝑌 + 𝑍) ∈ 𝑉)
25 mapdh.s . . . . . . . 8 = (-g𝑈)
269, 25lmodvsubcl 20789 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝑋𝑉 ∧ (𝑌 + 𝑍) ∈ 𝑉) → (𝑋 (𝑌 + 𝑍)) ∈ 𝑉)
276, 21, 24, 26syl3anc 1373 . . . . . 6 (𝜑 → (𝑋 (𝑌 + 𝑍)) ∈ 𝑉)
289, 4, 10lspsncl 20859 . . . . . 6 ((𝑈 ∈ LMod ∧ (𝑋 (𝑌 + 𝑍)) ∈ 𝑉) → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) ∈ (LSubSp‘𝑈))
296, 27, 28syl2anc 584 . . . . 5 (𝜑 → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) ∈ (LSubSp‘𝑈))
309, 4, 10lspsncl 20859 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
316, 21, 30syl2anc 584 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
324, 17lsmcl 20966 . . . . 5 ((𝑈 ∈ LMod ∧ (𝑁‘{(𝑋 (𝑌 + 𝑍))}) ∈ (LSubSp‘𝑈) ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈)) → ((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})) ∈ (LSubSp‘𝑈))
336, 29, 31, 32syl3anc 1373 . . . 4 (𝜑 → ((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})) ∈ (LSubSp‘𝑈))
341, 2, 3, 4, 5, 19, 33mapdin 41629 . . 3 (𝜑 → (𝑀‘(((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})))) = ((𝑀‘((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) ∩ (𝑀‘((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})))))
35 mapdh.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
36 eqid 2729 . . . . . 6 (LSSum‘𝐶) = (LSSum‘𝐶)
371, 2, 3, 4, 17, 35, 36, 5, 12, 16mapdlsm 41631 . . . . 5 (𝜑 → (𝑀‘((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) = ((𝑀‘(𝑁‘{𝑌}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍}))))
38 mapdh6.fg . . . . . . . 8 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
39 mapdh.q . . . . . . . . 9 𝑄 = (0g𝐶)
40 mapdh.i . . . . . . . . 9 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
41 mapdhc.o . . . . . . . . 9 0 = (0g𝑈)
42 mapdh.d . . . . . . . . 9 𝐷 = (Base‘𝐶)
43 mapdh.r . . . . . . . . 9 𝑅 = (-g𝐶)
44 mapdh.j . . . . . . . . 9 𝐽 = (LSpan‘𝐶)
45 mapdhc.f . . . . . . . . 9 (𝜑𝐹𝐷)
46 mapdh.mn . . . . . . . . 9 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
471, 3, 5dvhlvec 41076 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ LVec)
48 mapdh6.yz . . . . . . . . . . . . 13 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
49 mapdhe6.xn . . . . . . . . . . . . 13 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
509, 41, 10, 47, 8, 13, 21, 48, 49lspindp2 21021 . . . . . . . . . . . 12 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌})))
5150simpld 494 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
5239, 40, 1, 2, 3, 9, 25, 41, 10, 35, 42, 43, 44, 5, 45, 46, 20, 8, 51mapdhcl 41694 . . . . . . . . . 10 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) ∈ 𝐷)
5338, 52eqeltrrd 2829 . . . . . . . . 9 (𝜑𝐺𝐷)
5439, 40, 1, 2, 3, 9, 25, 41, 10, 35, 42, 43, 44, 5, 45, 46, 20, 7, 53, 51mapdheq 41695 . . . . . . . 8 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))))
5538, 54mpbid 232 . . . . . . 7 (𝜑 → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)})))
5655simpld 494 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}))
57 mapdh6.fe . . . . . . . 8 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
589, 41, 10, 47, 7, 14, 21, 48, 49lspindp1 21019 . . . . . . . . . . . 12 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}) ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})))
5958simpld 494 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
6039, 40, 1, 2, 3, 9, 25, 41, 10, 35, 42, 43, 44, 5, 45, 46, 20, 14, 59mapdhcl 41694 . . . . . . . . . 10 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) ∈ 𝐷)
6157, 60eqeltrrd 2829 . . . . . . . . 9 (𝜑𝐸𝐷)
6239, 40, 1, 2, 3, 9, 25, 41, 10, 35, 42, 43, 44, 5, 45, 46, 20, 13, 61, 59mapdheq 41695 . . . . . . . 8 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸 ↔ ((𝑀‘(𝑁‘{𝑍})) = (𝐽‘{𝐸}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑍)})) = (𝐽‘{(𝐹𝑅𝐸)}))))
6357, 62mpbid 232 . . . . . . 7 (𝜑 → ((𝑀‘(𝑁‘{𝑍})) = (𝐽‘{𝐸}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑍)})) = (𝐽‘{(𝐹𝑅𝐸)})))
6463simpld 494 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑍})) = (𝐽‘{𝐸}))
6556, 64oveq12d 7387 . . . . 5 (𝜑 → ((𝑀‘(𝑁‘{𝑌}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍}))) = ((𝐽‘{𝐺})(LSSum‘𝐶)(𝐽‘{𝐸})))
6637, 65eqtrd 2764 . . . 4 (𝜑 → (𝑀‘((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) = ((𝐽‘{𝐺})(LSSum‘𝐶)(𝐽‘{𝐸})))
671, 2, 3, 4, 17, 35, 36, 5, 29, 31mapdlsm 41631 . . . . 5 (𝜑 → (𝑀‘((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋}))) = ((𝑀‘(𝑁‘{(𝑋 (𝑌 + 𝑍))}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑋}))))
68 mapdh.a . . . . . . 7 = (+g𝐶)
6939, 40, 1, 2, 3, 9, 25, 41, 10, 35, 42, 43, 44, 5, 45, 46, 20, 22, 68, 7, 13, 49, 48, 38, 57mapdh6lem1N 41700 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{(𝑋 (𝑌 + 𝑍))})) = (𝐽‘{(𝐹𝑅(𝐺 𝐸))}))
7069, 46oveq12d 7387 . . . . 5 (𝜑 → ((𝑀‘(𝑁‘{(𝑋 (𝑌 + 𝑍))}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑋}))) = ((𝐽‘{(𝐹𝑅(𝐺 𝐸))})(LSSum‘𝐶)(𝐽‘{𝐹})))
7167, 70eqtrd 2764 . . . 4 (𝜑 → (𝑀‘((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋}))) = ((𝐽‘{(𝐹𝑅(𝐺 𝐸))})(LSSum‘𝐶)(𝐽‘{𝐹})))
7266, 71ineq12d 4180 . . 3 (𝜑 → ((𝑀‘((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) ∩ (𝑀‘((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})))) = (((𝐽‘{𝐺})(LSSum‘𝐶)(𝐽‘{𝐸})) ∩ ((𝐽‘{(𝐹𝑅(𝐺 𝐸))})(LSSum‘𝐶)(𝐽‘{𝐹}))))
7334, 72eqtrd 2764 . 2 (𝜑 → (𝑀‘(((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})))) = (((𝐽‘{𝐺})(LSSum‘𝐶)(𝐽‘{𝐸})) ∩ ((𝐽‘{(𝐹𝑅(𝐺 𝐸))})(LSSum‘𝐶)(𝐽‘{𝐹}))))
749, 25, 41, 17, 10, 47, 21, 49, 48, 7, 13, 22baerlem5b 41682 . . 3 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) = (((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋}))))
7574fveq2d 6844 . 2 (𝜑 → (𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝑀‘(((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})))))
761, 35, 5lcdlvec 41558 . . 3 (𝜑𝐶 ∈ LVec)
771, 2, 3, 9, 10, 35, 42, 44, 5, 45, 46, 21, 8, 53, 56, 14, 61, 64, 49mapdindp 41638 . . 3 (𝜑 → ¬ 𝐹 ∈ (𝐽‘{𝐺, 𝐸}))
781, 2, 3, 9, 10, 35, 42, 44, 5, 53, 56, 8, 14, 61, 64, 48mapdncol 41637 . . 3 (𝜑 → (𝐽‘{𝐺}) ≠ (𝐽‘{𝐸}))
791, 2, 3, 9, 10, 35, 42, 44, 5, 53, 56, 41, 39, 7mapdn0 41636 . . 3 (𝜑𝐺 ∈ (𝐷 ∖ {𝑄}))
801, 2, 3, 9, 10, 35, 42, 44, 5, 61, 64, 41, 39, 13mapdn0 41636 . . 3 (𝜑𝐸 ∈ (𝐷 ∖ {𝑄}))
8142, 43, 39, 36, 44, 76, 45, 77, 78, 79, 80, 68baerlem5b 41682 . 2 (𝜑 → (𝐽‘{(𝐺 𝐸)}) = (((𝐽‘{𝐺})(LSSum‘𝐶)(𝐽‘{𝐸})) ∩ ((𝐽‘{(𝐹𝑅(𝐺 𝐸))})(LSSum‘𝐶)(𝐽‘{𝐹}))))
8273, 75, 813eqtr4d 2774 1 (𝜑 → (𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝐽‘{(𝐺 𝐸)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3444  cdif 3908  cin 3910  ifcif 4484  {csn 4585  {cpr 4587  cotp 4593  cmpt 5183  cfv 6499  crio 7325  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946  Basecbs 17155  +gcplusg 17196  0gc0g 17378  -gcsg 18843  LSSumclsm 19540  LModclmod 20742  LSubSpclss 20813  LSpanclspn 20853  HLchlt 39316  LHypclh 39951  DVecHcdvh 41045  LCDualclcd 41553  mapdcmpd 41591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-riotaBAD 38919
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-undef 8229  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-0g 17380  df-mre 17523  df-mrc 17524  df-acs 17526  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-p1 18361  df-lat 18367  df-clat 18434  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-subg 19031  df-cntz 19225  df-oppg 19254  df-lsm 19542  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-nzr 20398  df-rlreg 20579  df-domn 20580  df-drng 20616  df-lmod 20744  df-lss 20814  df-lsp 20854  df-lvec 20986  df-lsatoms 38942  df-lshyp 38943  df-lcv 38985  df-lfl 39024  df-lkr 39052  df-ldual 39090  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317  df-llines 39465  df-lplanes 39466  df-lvols 39467  df-lines 39468  df-psubsp 39470  df-pmap 39471  df-padd 39763  df-lhyp 39955  df-laut 39956  df-ldil 40071  df-ltrn 40072  df-trl 40126  df-tgrp 40710  df-tendo 40722  df-edring 40724  df-dveca 40970  df-disoa 40996  df-dvech 41046  df-dib 41106  df-dic 41140  df-dih 41196  df-doch 41315  df-djh 41362  df-lcdual 41554  df-mapd 41592
This theorem is referenced by:  mapdh6aN  41702
  Copyright terms: Public domain W3C validator