Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem5N Structured version   Visualization version   GIF version

Theorem mapdpglem5N 41786
Description: Lemma for mapdpg 41815. (Contributed by NM, 20-Mar-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdpglem.h 𝐻 = (LHyp‘𝐾)
mapdpglem.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpglem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpglem.v 𝑉 = (Base‘𝑈)
mapdpglem.s = (-g𝑈)
mapdpglem.n 𝑁 = (LSpan‘𝑈)
mapdpglem.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpglem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpglem.x (𝜑𝑋𝑉)
mapdpglem.y (𝜑𝑌𝑉)
mapdpglem1.p = (LSSum‘𝐶)
mapdpglem2.j 𝐽 = (LSpan‘𝐶)
mapdpglem3.f 𝐹 = (Base‘𝐶)
mapdpglem3.te (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
mapdpglem3.a 𝐴 = (Scalar‘𝑈)
mapdpglem3.b 𝐵 = (Base‘𝐴)
mapdpglem3.t · = ( ·𝑠𝐶)
mapdpglem3.r 𝑅 = (-g𝐶)
mapdpglem3.g (𝜑𝐺𝐹)
mapdpglem3.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
mapdpglem4.q 𝑄 = (0g𝑈)
mapdpglem.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdpglem4.jt (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
Assertion
Ref Expression
mapdpglem5N (𝜑𝑡 ≠ (0g𝐶))
Distinct variable groups:   𝑡,   𝑡,𝐶   𝑡,𝐽   𝑡,𝑀   𝑡,𝑁   𝑡,𝑋   𝑡,𝑌
Allowed substitution hints:   𝜑(𝑡)   𝐴(𝑡)   𝐵(𝑡)   (𝑡)   𝑄(𝑡)   𝑅(𝑡)   · (𝑡)   𝑈(𝑡)   𝐹(𝑡)   𝐺(𝑡)   𝐻(𝑡)   𝐾(𝑡)   𝑉(𝑡)   𝑊(𝑡)

Proof of Theorem mapdpglem5N
StepHypRef Expression
1 mapdpglem4.jt . . 3 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
2 mapdpglem.h . . . 4 𝐻 = (LHyp‘𝐾)
3 mapdpglem.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
4 mapdpglem.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 eqid 2731 . . . 4 (LSAtoms‘𝑈) = (LSAtoms‘𝑈)
6 mapdpglem.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
7 eqid 2731 . . . 4 (LSAtoms‘𝐶) = (LSAtoms‘𝐶)
8 mapdpglem.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
9 mapdpglem.v . . . . . 6 𝑉 = (Base‘𝑈)
10 mapdpglem.s . . . . . 6 = (-g𝑈)
11 mapdpglem.n . . . . . 6 𝑁 = (LSpan‘𝑈)
12 mapdpglem.x . . . . . 6 (𝜑𝑋𝑉)
13 mapdpglem.y . . . . . 6 (𝜑𝑌𝑉)
14 mapdpglem1.p . . . . . 6 = (LSSum‘𝐶)
15 mapdpglem2.j . . . . . 6 𝐽 = (LSpan‘𝐶)
16 mapdpglem3.f . . . . . 6 𝐹 = (Base‘𝐶)
17 mapdpglem3.te . . . . . 6 (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
18 mapdpglem3.a . . . . . 6 𝐴 = (Scalar‘𝑈)
19 mapdpglem3.b . . . . . 6 𝐵 = (Base‘𝐴)
20 mapdpglem3.t . . . . . 6 · = ( ·𝑠𝐶)
21 mapdpglem3.r . . . . . 6 𝑅 = (-g𝐶)
22 mapdpglem3.g . . . . . 6 (𝜑𝐺𝐹)
23 mapdpglem3.e . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
24 mapdpglem4.q . . . . . 6 𝑄 = (0g𝑈)
25 mapdpglem.ne . . . . . 6 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
262, 3, 4, 9, 10, 11, 6, 8, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25mapdpglem4N 41785 . . . . 5 (𝜑 → (𝑋 𝑌) ≠ 𝑄)
272, 4, 8dvhlmod 41219 . . . . . 6 (𝜑𝑈 ∈ LMod)
289, 10lmodvsubcl 20840 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
2927, 12, 13, 28syl3anc 1373 . . . . . 6 (𝜑 → (𝑋 𝑌) ∈ 𝑉)
309, 11, 24, 5, 27, 29lsatspn0 39109 . . . . 5 (𝜑 → ((𝑁‘{(𝑋 𝑌)}) ∈ (LSAtoms‘𝑈) ↔ (𝑋 𝑌) ≠ 𝑄))
3126, 30mpbird 257 . . . 4 (𝜑 → (𝑁‘{(𝑋 𝑌)}) ∈ (LSAtoms‘𝑈))
322, 3, 4, 5, 6, 7, 8, 31mapdat 41776 . . 3 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) ∈ (LSAtoms‘𝐶))
331, 32eqeltrrd 2832 . 2 (𝜑 → (𝐽‘{𝑡}) ∈ (LSAtoms‘𝐶))
34 eqid 2731 . . 3 (0g𝐶) = (0g𝐶)
352, 6, 8lcdlmod 41701 . . 3 (𝜑𝐶 ∈ LMod)
362, 3, 4, 9, 10, 11, 6, 8, 12, 13, 14, 15, 16, 17mapdpglem2a 41783 . . 3 (𝜑𝑡𝐹)
3716, 15, 34, 7, 35, 36lsatspn0 39109 . 2 (𝜑 → ((𝐽‘{𝑡}) ∈ (LSAtoms‘𝐶) ↔ 𝑡 ≠ (0g𝐶)))
3833, 37mpbid 232 1 (𝜑𝑡 ≠ (0g𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  {csn 4573  cfv 6481  (class class class)co 7346  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343  -gcsg 18848  LSSumclsm 19546  LModclmod 20793  LSpanclspn 20904  LSAtomsclsa 39083  HLchlt 39459  LHypclh 40093  DVecHcdvh 41187  LCDualclcd 41695  mapdcmpd 41733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-riotaBAD 39062
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-undef 8203  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-0g 17345  df-mre 17488  df-mrc 17489  df-acs 17491  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-cntz 19229  df-oppg 19258  df-lsm 19548  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-dvr 20319  df-nzr 20428  df-rlreg 20609  df-domn 20610  df-drng 20646  df-lmod 20795  df-lss 20865  df-lsp 20905  df-lvec 21037  df-lsatoms 39085  df-lshyp 39086  df-lcv 39128  df-lfl 39167  df-lkr 39195  df-ldual 39233  df-oposet 39285  df-ol 39287  df-oml 39288  df-covers 39375  df-ats 39376  df-atl 39407  df-cvlat 39431  df-hlat 39460  df-llines 39607  df-lplanes 39608  df-lvols 39609  df-lines 39610  df-psubsp 39612  df-pmap 39613  df-padd 39905  df-lhyp 40097  df-laut 40098  df-ldil 40213  df-ltrn 40214  df-trl 40268  df-tgrp 40852  df-tendo 40864  df-edring 40866  df-dveca 41112  df-disoa 41138  df-dvech 41188  df-dib 41248  df-dic 41282  df-dih 41338  df-doch 41457  df-djh 41504  df-lcdual 41696  df-mapd 41734
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator