Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdheq4lem Structured version   Visualization version   GIF version

Theorem mapdheq4lem 40597
Description: Lemma for mapdheq4 40598. Part (4) in [Baer] p. 46. (Contributed by NM, 12-Apr-2015.)
Hypotheses
Ref Expression
mapdh.q 𝑄 = (0gβ€˜πΆ)
mapdh.i 𝐼 = (π‘₯ ∈ V ↦ if((2nd β€˜π‘₯) = 0 , 𝑄, (β„©β„Ž ∈ 𝐷 ((π‘€β€˜(π‘β€˜{(2nd β€˜π‘₯)})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{((1st β€˜(1st β€˜π‘₯)) βˆ’ (2nd β€˜π‘₯))})) = (π½β€˜{((2nd β€˜(1st β€˜π‘₯))π‘…β„Ž)})))))
mapdh.h 𝐻 = (LHypβ€˜πΎ)
mapdh.m 𝑀 = ((mapdβ€˜πΎ)β€˜π‘Š)
mapdh.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
mapdh.v 𝑉 = (Baseβ€˜π‘ˆ)
mapdh.s βˆ’ = (-gβ€˜π‘ˆ)
mapdhc.o 0 = (0gβ€˜π‘ˆ)
mapdh.n 𝑁 = (LSpanβ€˜π‘ˆ)
mapdh.c 𝐢 = ((LCDualβ€˜πΎ)β€˜π‘Š)
mapdh.d 𝐷 = (Baseβ€˜πΆ)
mapdh.r 𝑅 = (-gβ€˜πΆ)
mapdh.j 𝐽 = (LSpanβ€˜πΆ)
mapdh.k (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
mapdhc.f (πœ‘ β†’ 𝐹 ∈ 𝐷)
mapdh.mn (πœ‘ β†’ (π‘€β€˜(π‘β€˜{𝑋})) = (π½β€˜{𝐹}))
mapdhcl.x (πœ‘ β†’ 𝑋 ∈ (𝑉 βˆ– { 0 }))
mapdhe4.y (πœ‘ β†’ π‘Œ ∈ (𝑉 βˆ– { 0 }))
mapdhe.z (πœ‘ β†’ 𝑍 ∈ (𝑉 βˆ– { 0 }))
mapdh.xn (πœ‘ β†’ Β¬ 𝑋 ∈ (π‘β€˜{π‘Œ, 𝑍}))
mapdh.yz (πœ‘ β†’ (π‘β€˜{π‘Œ}) β‰  (π‘β€˜{𝑍}))
mapdh.eg (πœ‘ β†’ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) = 𝐺)
mapdh.ee (πœ‘ β†’ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘βŸ©) = 𝐸)
Assertion
Ref Expression
mapdheq4lem (πœ‘ β†’ (π‘€β€˜(π‘β€˜{(π‘Œ βˆ’ 𝑍)})) = (π½β€˜{(𝐺𝑅𝐸)}))
Distinct variable groups:   π‘₯,𝐷,β„Ž   β„Ž,𝐹,π‘₯   π‘₯,𝐽   π‘₯,𝑀   π‘₯,𝑁   π‘₯, 0   π‘₯,𝑄   π‘₯,𝑅   π‘₯, βˆ’   β„Ž,𝑋,π‘₯   β„Ž,π‘Œ,π‘₯   πœ‘,β„Ž   0 ,β„Ž   𝐢,β„Ž   𝐷,β„Ž   β„Ž,𝐽   β„Ž,𝑀   β„Ž,𝑁   𝑅,β„Ž   π‘ˆ,β„Ž   βˆ’ ,β„Ž   β„Ž,𝐺,π‘₯   β„Ž,𝐸   β„Ž,𝑍,π‘₯
Allowed substitution hints:   πœ‘(π‘₯)   𝐢(π‘₯)   𝑄(β„Ž)   π‘ˆ(π‘₯)   𝐸(π‘₯)   𝐻(π‘₯,β„Ž)   𝐼(π‘₯,β„Ž)   𝐾(π‘₯,β„Ž)   𝑉(π‘₯,β„Ž)   π‘Š(π‘₯,β„Ž)

Proof of Theorem mapdheq4lem
StepHypRef Expression
1 mapdh.h . . . 4 𝐻 = (LHypβ€˜πΎ)
2 mapdh.m . . . 4 𝑀 = ((mapdβ€˜πΎ)β€˜π‘Š)
3 mapdh.u . . . 4 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
4 eqid 2732 . . . 4 (LSubSpβ€˜π‘ˆ) = (LSubSpβ€˜π‘ˆ)
5 mapdh.k . . . 4 (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
61, 3, 5dvhlmod 39976 . . . . 5 (πœ‘ β†’ π‘ˆ ∈ LMod)
7 mapdhe4.y . . . . . . 7 (πœ‘ β†’ π‘Œ ∈ (𝑉 βˆ– { 0 }))
87eldifad 3960 . . . . . 6 (πœ‘ β†’ π‘Œ ∈ 𝑉)
9 mapdh.v . . . . . . 7 𝑉 = (Baseβ€˜π‘ˆ)
10 mapdh.n . . . . . . 7 𝑁 = (LSpanβ€˜π‘ˆ)
119, 4, 10lspsncl 20587 . . . . . 6 ((π‘ˆ ∈ LMod ∧ π‘Œ ∈ 𝑉) β†’ (π‘β€˜{π‘Œ}) ∈ (LSubSpβ€˜π‘ˆ))
126, 8, 11syl2anc 584 . . . . 5 (πœ‘ β†’ (π‘β€˜{π‘Œ}) ∈ (LSubSpβ€˜π‘ˆ))
13 mapdhe.z . . . . . . 7 (πœ‘ β†’ 𝑍 ∈ (𝑉 βˆ– { 0 }))
1413eldifad 3960 . . . . . 6 (πœ‘ β†’ 𝑍 ∈ 𝑉)
159, 4, 10lspsncl 20587 . . . . . 6 ((π‘ˆ ∈ LMod ∧ 𝑍 ∈ 𝑉) β†’ (π‘β€˜{𝑍}) ∈ (LSubSpβ€˜π‘ˆ))
166, 14, 15syl2anc 584 . . . . 5 (πœ‘ β†’ (π‘β€˜{𝑍}) ∈ (LSubSpβ€˜π‘ˆ))
17 eqid 2732 . . . . . 6 (LSSumβ€˜π‘ˆ) = (LSSumβ€˜π‘ˆ)
184, 17lsmcl 20693 . . . . 5 ((π‘ˆ ∈ LMod ∧ (π‘β€˜{π‘Œ}) ∈ (LSubSpβ€˜π‘ˆ) ∧ (π‘β€˜{𝑍}) ∈ (LSubSpβ€˜π‘ˆ)) β†’ ((π‘β€˜{π‘Œ})(LSSumβ€˜π‘ˆ)(π‘β€˜{𝑍})) ∈ (LSubSpβ€˜π‘ˆ))
196, 12, 16, 18syl3anc 1371 . . . 4 (πœ‘ β†’ ((π‘β€˜{π‘Œ})(LSSumβ€˜π‘ˆ)(π‘β€˜{𝑍})) ∈ (LSubSpβ€˜π‘ˆ))
20 mapdhcl.x . . . . . . . 8 (πœ‘ β†’ 𝑋 ∈ (𝑉 βˆ– { 0 }))
2120eldifad 3960 . . . . . . 7 (πœ‘ β†’ 𝑋 ∈ 𝑉)
22 mapdh.s . . . . . . . 8 βˆ’ = (-gβ€˜π‘ˆ)
239, 22lmodvsubcl 20516 . . . . . . 7 ((π‘ˆ ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (𝑋 βˆ’ π‘Œ) ∈ 𝑉)
246, 21, 8, 23syl3anc 1371 . . . . . 6 (πœ‘ β†’ (𝑋 βˆ’ π‘Œ) ∈ 𝑉)
259, 4, 10lspsncl 20587 . . . . . 6 ((π‘ˆ ∈ LMod ∧ (𝑋 βˆ’ π‘Œ) ∈ 𝑉) β†’ (π‘β€˜{(𝑋 βˆ’ π‘Œ)}) ∈ (LSubSpβ€˜π‘ˆ))
266, 24, 25syl2anc 584 . . . . 5 (πœ‘ β†’ (π‘β€˜{(𝑋 βˆ’ π‘Œ)}) ∈ (LSubSpβ€˜π‘ˆ))
279, 22lmodvsubcl 20516 . . . . . . 7 ((π‘ˆ ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉) β†’ (𝑋 βˆ’ 𝑍) ∈ 𝑉)
286, 21, 14, 27syl3anc 1371 . . . . . 6 (πœ‘ β†’ (𝑋 βˆ’ 𝑍) ∈ 𝑉)
299, 4, 10lspsncl 20587 . . . . . 6 ((π‘ˆ ∈ LMod ∧ (𝑋 βˆ’ 𝑍) ∈ 𝑉) β†’ (π‘β€˜{(𝑋 βˆ’ 𝑍)}) ∈ (LSubSpβ€˜π‘ˆ))
306, 28, 29syl2anc 584 . . . . 5 (πœ‘ β†’ (π‘β€˜{(𝑋 βˆ’ 𝑍)}) ∈ (LSubSpβ€˜π‘ˆ))
314, 17lsmcl 20693 . . . . 5 ((π‘ˆ ∈ LMod ∧ (π‘β€˜{(𝑋 βˆ’ π‘Œ)}) ∈ (LSubSpβ€˜π‘ˆ) ∧ (π‘β€˜{(𝑋 βˆ’ 𝑍)}) ∈ (LSubSpβ€˜π‘ˆ)) β†’ ((π‘β€˜{(𝑋 βˆ’ π‘Œ)})(LSSumβ€˜π‘ˆ)(π‘β€˜{(𝑋 βˆ’ 𝑍)})) ∈ (LSubSpβ€˜π‘ˆ))
326, 26, 30, 31syl3anc 1371 . . . 4 (πœ‘ β†’ ((π‘β€˜{(𝑋 βˆ’ π‘Œ)})(LSSumβ€˜π‘ˆ)(π‘β€˜{(𝑋 βˆ’ 𝑍)})) ∈ (LSubSpβ€˜π‘ˆ))
331, 2, 3, 4, 5, 19, 32mapdin 40528 . . 3 (πœ‘ β†’ (π‘€β€˜(((π‘β€˜{π‘Œ})(LSSumβ€˜π‘ˆ)(π‘β€˜{𝑍})) ∩ ((π‘β€˜{(𝑋 βˆ’ π‘Œ)})(LSSumβ€˜π‘ˆ)(π‘β€˜{(𝑋 βˆ’ 𝑍)})))) = ((π‘€β€˜((π‘β€˜{π‘Œ})(LSSumβ€˜π‘ˆ)(π‘β€˜{𝑍}))) ∩ (π‘€β€˜((π‘β€˜{(𝑋 βˆ’ π‘Œ)})(LSSumβ€˜π‘ˆ)(π‘β€˜{(𝑋 βˆ’ 𝑍)})))))
34 mapdh.c . . . . . 6 𝐢 = ((LCDualβ€˜πΎ)β€˜π‘Š)
35 eqid 2732 . . . . . 6 (LSSumβ€˜πΆ) = (LSSumβ€˜πΆ)
361, 2, 3, 4, 17, 34, 35, 5, 12, 16mapdlsm 40530 . . . . 5 (πœ‘ β†’ (π‘€β€˜((π‘β€˜{π‘Œ})(LSSumβ€˜π‘ˆ)(π‘β€˜{𝑍}))) = ((π‘€β€˜(π‘β€˜{π‘Œ}))(LSSumβ€˜πΆ)(π‘€β€˜(π‘β€˜{𝑍}))))
37 mapdh.eg . . . . . . . 8 (πœ‘ β†’ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) = 𝐺)
38 mapdh.q . . . . . . . . 9 𝑄 = (0gβ€˜πΆ)
39 mapdh.i . . . . . . . . 9 𝐼 = (π‘₯ ∈ V ↦ if((2nd β€˜π‘₯) = 0 , 𝑄, (β„©β„Ž ∈ 𝐷 ((π‘€β€˜(π‘β€˜{(2nd β€˜π‘₯)})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{((1st β€˜(1st β€˜π‘₯)) βˆ’ (2nd β€˜π‘₯))})) = (π½β€˜{((2nd β€˜(1st β€˜π‘₯))π‘…β„Ž)})))))
40 mapdhc.o . . . . . . . . 9 0 = (0gβ€˜π‘ˆ)
41 mapdh.d . . . . . . . . 9 𝐷 = (Baseβ€˜πΆ)
42 mapdh.r . . . . . . . . 9 𝑅 = (-gβ€˜πΆ)
43 mapdh.j . . . . . . . . 9 𝐽 = (LSpanβ€˜πΆ)
44 mapdhc.f . . . . . . . . 9 (πœ‘ β†’ 𝐹 ∈ 𝐷)
45 mapdh.mn . . . . . . . . 9 (πœ‘ β†’ (π‘€β€˜(π‘β€˜{𝑋})) = (π½β€˜{𝐹}))
461, 3, 5dvhlvec 39975 . . . . . . . . . . . . 13 (πœ‘ β†’ π‘ˆ ∈ LVec)
47 mapdh.yz . . . . . . . . . . . . 13 (πœ‘ β†’ (π‘β€˜{π‘Œ}) β‰  (π‘β€˜{𝑍}))
48 mapdh.xn . . . . . . . . . . . . 13 (πœ‘ β†’ Β¬ 𝑋 ∈ (π‘β€˜{π‘Œ, 𝑍}))
499, 40, 10, 46, 8, 13, 21, 47, 48lspindp2 20747 . . . . . . . . . . . 12 (πœ‘ β†’ ((π‘β€˜{𝑋}) β‰  (π‘β€˜{π‘Œ}) ∧ Β¬ 𝑍 ∈ (π‘β€˜{𝑋, π‘Œ})))
5049simpld 495 . . . . . . . . . . 11 (πœ‘ β†’ (π‘β€˜{𝑋}) β‰  (π‘β€˜{π‘Œ}))
5138, 39, 1, 2, 3, 9, 22, 40, 10, 34, 41, 42, 43, 5, 44, 45, 20, 8, 50mapdhcl 40593 . . . . . . . . . 10 (πœ‘ β†’ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) ∈ 𝐷)
5237, 51eqeltrrd 2834 . . . . . . . . 9 (πœ‘ β†’ 𝐺 ∈ 𝐷)
5338, 39, 1, 2, 3, 9, 22, 40, 10, 34, 41, 42, 43, 5, 44, 45, 20, 7, 52, 50mapdheq 40594 . . . . . . . 8 (πœ‘ β†’ ((πΌβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) = 𝐺 ↔ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝐺}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐹𝑅𝐺)}))))
5437, 53mpbid 231 . . . . . . 7 (πœ‘ β†’ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝐺}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐹𝑅𝐺)})))
5554simpld 495 . . . . . 6 (πœ‘ β†’ (π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝐺}))
56 mapdh.ee . . . . . . . 8 (πœ‘ β†’ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘βŸ©) = 𝐸)
579, 40, 10, 46, 7, 14, 21, 47, 48lspindp1 20745 . . . . . . . . . . . 12 (πœ‘ β†’ ((π‘β€˜{𝑋}) β‰  (π‘β€˜{𝑍}) ∧ Β¬ π‘Œ ∈ (π‘β€˜{𝑋, 𝑍})))
5857simpld 495 . . . . . . . . . . 11 (πœ‘ β†’ (π‘β€˜{𝑋}) β‰  (π‘β€˜{𝑍}))
5938, 39, 1, 2, 3, 9, 22, 40, 10, 34, 41, 42, 43, 5, 44, 45, 20, 14, 58mapdhcl 40593 . . . . . . . . . 10 (πœ‘ β†’ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘βŸ©) ∈ 𝐷)
6056, 59eqeltrrd 2834 . . . . . . . . 9 (πœ‘ β†’ 𝐸 ∈ 𝐷)
6138, 39, 1, 2, 3, 9, 22, 40, 10, 34, 41, 42, 43, 5, 44, 45, 20, 13, 60, 58mapdheq 40594 . . . . . . . 8 (πœ‘ β†’ ((πΌβ€˜βŸ¨π‘‹, 𝐹, π‘βŸ©) = 𝐸 ↔ ((π‘€β€˜(π‘β€˜{𝑍})) = (π½β€˜{𝐸}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ 𝑍)})) = (π½β€˜{(𝐹𝑅𝐸)}))))
6256, 61mpbid 231 . . . . . . 7 (πœ‘ β†’ ((π‘€β€˜(π‘β€˜{𝑍})) = (π½β€˜{𝐸}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ 𝑍)})) = (π½β€˜{(𝐹𝑅𝐸)})))
6362simpld 495 . . . . . 6 (πœ‘ β†’ (π‘€β€˜(π‘β€˜{𝑍})) = (π½β€˜{𝐸}))
6455, 63oveq12d 7426 . . . . 5 (πœ‘ β†’ ((π‘€β€˜(π‘β€˜{π‘Œ}))(LSSumβ€˜πΆ)(π‘€β€˜(π‘β€˜{𝑍}))) = ((π½β€˜{𝐺})(LSSumβ€˜πΆ)(π½β€˜{𝐸})))
6536, 64eqtrd 2772 . . . 4 (πœ‘ β†’ (π‘€β€˜((π‘β€˜{π‘Œ})(LSSumβ€˜π‘ˆ)(π‘β€˜{𝑍}))) = ((π½β€˜{𝐺})(LSSumβ€˜πΆ)(π½β€˜{𝐸})))
661, 2, 3, 4, 17, 34, 35, 5, 26, 30mapdlsm 40530 . . . . 5 (πœ‘ β†’ (π‘€β€˜((π‘β€˜{(𝑋 βˆ’ π‘Œ)})(LSSumβ€˜π‘ˆ)(π‘β€˜{(𝑋 βˆ’ 𝑍)}))) = ((π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)}))(LSSumβ€˜πΆ)(π‘€β€˜(π‘β€˜{(𝑋 βˆ’ 𝑍)}))))
6754simprd 496 . . . . . 6 (πœ‘ β†’ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐹𝑅𝐺)}))
6862simprd 496 . . . . . 6 (πœ‘ β†’ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ 𝑍)})) = (π½β€˜{(𝐹𝑅𝐸)}))
6967, 68oveq12d 7426 . . . . 5 (πœ‘ β†’ ((π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)}))(LSSumβ€˜πΆ)(π‘€β€˜(π‘β€˜{(𝑋 βˆ’ 𝑍)}))) = ((π½β€˜{(𝐹𝑅𝐺)})(LSSumβ€˜πΆ)(π½β€˜{(𝐹𝑅𝐸)})))
7066, 69eqtrd 2772 . . . 4 (πœ‘ β†’ (π‘€β€˜((π‘β€˜{(𝑋 βˆ’ π‘Œ)})(LSSumβ€˜π‘ˆ)(π‘β€˜{(𝑋 βˆ’ 𝑍)}))) = ((π½β€˜{(𝐹𝑅𝐺)})(LSSumβ€˜πΆ)(π½β€˜{(𝐹𝑅𝐸)})))
7165, 70ineq12d 4213 . . 3 (πœ‘ β†’ ((π‘€β€˜((π‘β€˜{π‘Œ})(LSSumβ€˜π‘ˆ)(π‘β€˜{𝑍}))) ∩ (π‘€β€˜((π‘β€˜{(𝑋 βˆ’ π‘Œ)})(LSSumβ€˜π‘ˆ)(π‘β€˜{(𝑋 βˆ’ 𝑍)})))) = (((π½β€˜{𝐺})(LSSumβ€˜πΆ)(π½β€˜{𝐸})) ∩ ((π½β€˜{(𝐹𝑅𝐺)})(LSSumβ€˜πΆ)(π½β€˜{(𝐹𝑅𝐸)}))))
7233, 71eqtrd 2772 . 2 (πœ‘ β†’ (π‘€β€˜(((π‘β€˜{π‘Œ})(LSSumβ€˜π‘ˆ)(π‘β€˜{𝑍})) ∩ ((π‘β€˜{(𝑋 βˆ’ π‘Œ)})(LSSumβ€˜π‘ˆ)(π‘β€˜{(𝑋 βˆ’ 𝑍)})))) = (((π½β€˜{𝐺})(LSSumβ€˜πΆ)(π½β€˜{𝐸})) ∩ ((π½β€˜{(𝐹𝑅𝐺)})(LSSumβ€˜πΆ)(π½β€˜{(𝐹𝑅𝐸)}))))
739, 22, 40, 17, 10, 46, 21, 48, 47, 7, 13baerlem3 40579 . . 3 (πœ‘ β†’ (π‘β€˜{(π‘Œ βˆ’ 𝑍)}) = (((π‘β€˜{π‘Œ})(LSSumβ€˜π‘ˆ)(π‘β€˜{𝑍})) ∩ ((π‘β€˜{(𝑋 βˆ’ π‘Œ)})(LSSumβ€˜π‘ˆ)(π‘β€˜{(𝑋 βˆ’ 𝑍)}))))
7473fveq2d 6895 . 2 (πœ‘ β†’ (π‘€β€˜(π‘β€˜{(π‘Œ βˆ’ 𝑍)})) = (π‘€β€˜(((π‘β€˜{π‘Œ})(LSSumβ€˜π‘ˆ)(π‘β€˜{𝑍})) ∩ ((π‘β€˜{(𝑋 βˆ’ π‘Œ)})(LSSumβ€˜π‘ˆ)(π‘β€˜{(𝑋 βˆ’ 𝑍)})))))
75 eqid 2732 . . 3 (0gβ€˜πΆ) = (0gβ€˜πΆ)
761, 34, 5lcdlvec 40457 . . 3 (πœ‘ β†’ 𝐢 ∈ LVec)
771, 2, 3, 9, 10, 34, 41, 43, 5, 44, 45, 21, 8, 52, 55, 14, 60, 63, 48mapdindp 40537 . . 3 (πœ‘ β†’ Β¬ 𝐹 ∈ (π½β€˜{𝐺, 𝐸}))
781, 2, 3, 9, 10, 34, 41, 43, 5, 52, 55, 8, 14, 60, 63, 47mapdncol 40536 . . 3 (πœ‘ β†’ (π½β€˜{𝐺}) β‰  (π½β€˜{𝐸}))
791, 2, 3, 9, 10, 34, 41, 43, 5, 52, 55, 40, 75, 7mapdn0 40535 . . 3 (πœ‘ β†’ 𝐺 ∈ (𝐷 βˆ– {(0gβ€˜πΆ)}))
801, 2, 3, 9, 10, 34, 41, 43, 5, 60, 63, 40, 75, 13mapdn0 40535 . . 3 (πœ‘ β†’ 𝐸 ∈ (𝐷 βˆ– {(0gβ€˜πΆ)}))
8141, 42, 75, 35, 43, 76, 44, 77, 78, 79, 80baerlem3 40579 . 2 (πœ‘ β†’ (π½β€˜{(𝐺𝑅𝐸)}) = (((π½β€˜{𝐺})(LSSumβ€˜πΆ)(π½β€˜{𝐸})) ∩ ((π½β€˜{(𝐹𝑅𝐺)})(LSSumβ€˜πΆ)(π½β€˜{(𝐹𝑅𝐸)}))))
8272, 74, 813eqtr4d 2782 1 (πœ‘ β†’ (π‘€β€˜(π‘β€˜{(π‘Œ βˆ’ 𝑍)})) = (π½β€˜{(𝐺𝑅𝐸)}))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  Vcvv 3474   βˆ– cdif 3945   ∩ cin 3947  ifcif 4528  {csn 4628  {cpr 4630  βŸ¨cotp 4636   ↦ cmpt 5231  β€˜cfv 6543  β„©crio 7363  (class class class)co 7408  1st c1st 7972  2nd c2nd 7973  Basecbs 17143  0gc0g 17384  -gcsg 18820  LSSumclsm 19501  LModclmod 20470  LSubSpclss 20541  LSpanclspn 20581  HLchlt 38215  LHypclh 38850  DVecHcdvh 39944  LCDualclcd 40452  mapdcmpd 40490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-riotaBAD 37818
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-ot 4637  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-of 7669  df-om 7855  df-1st 7974  df-2nd 7975  df-tpos 8210  df-undef 8257  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13484  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-0g 17386  df-mre 17529  df-mrc 17530  df-acs 17532  df-proset 18247  df-poset 18265  df-plt 18282  df-lub 18298  df-glb 18299  df-join 18300  df-meet 18301  df-p0 18377  df-p1 18378  df-lat 18384  df-clat 18451  df-mgm 18560  df-sgrp 18609  df-mnd 18625  df-submnd 18671  df-grp 18821  df-minusg 18822  df-sbg 18823  df-subg 19002  df-cntz 19180  df-oppg 19209  df-lsm 19503  df-cmn 19649  df-abl 19650  df-mgp 19987  df-ur 20004  df-ring 20057  df-oppr 20149  df-dvdsr 20170  df-unit 20171  df-invr 20201  df-dvr 20214  df-drng 20358  df-lmod 20472  df-lss 20542  df-lsp 20582  df-lvec 20713  df-lsatoms 37841  df-lshyp 37842  df-lcv 37884  df-lfl 37923  df-lkr 37951  df-ldual 37989  df-oposet 38041  df-ol 38043  df-oml 38044  df-covers 38131  df-ats 38132  df-atl 38163  df-cvlat 38187  df-hlat 38216  df-llines 38364  df-lplanes 38365  df-lvols 38366  df-lines 38367  df-psubsp 38369  df-pmap 38370  df-padd 38662  df-lhyp 38854  df-laut 38855  df-ldil 38970  df-ltrn 38971  df-trl 39025  df-tgrp 39609  df-tendo 39621  df-edring 39623  df-dveca 39869  df-disoa 39895  df-dvech 39945  df-dib 40005  df-dic 40039  df-dih 40095  df-doch 40214  df-djh 40261  df-lcdual 40453  df-mapd 40491
This theorem is referenced by:  mapdheq4  40598
  Copyright terms: Public domain W3C validator