Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdheq4lem Structured version   Visualization version   GIF version

Theorem mapdheq4lem 39439
Description: Lemma for mapdheq4 39440. Part (4) in [Baer] p. 46. (Contributed by NM, 12-Apr-2015.)
Hypotheses
Ref Expression
mapdh.q 𝑄 = (0g𝐶)
mapdh.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh.h 𝐻 = (LHyp‘𝐾)
mapdh.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh.v 𝑉 = (Base‘𝑈)
mapdh.s = (-g𝑈)
mapdhc.o 0 = (0g𝑈)
mapdh.n 𝑁 = (LSpan‘𝑈)
mapdh.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh.d 𝐷 = (Base‘𝐶)
mapdh.r 𝑅 = (-g𝐶)
mapdh.j 𝐽 = (LSpan‘𝐶)
mapdh.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdhc.f (𝜑𝐹𝐷)
mapdh.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdhcl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdhe4.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdhe.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
mapdh.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
mapdh.yz (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
mapdh.eg (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
mapdh.ee (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
Assertion
Ref Expression
mapdheq4lem (𝜑 → (𝑀‘(𝑁‘{(𝑌 𝑍)})) = (𝐽‘{(𝐺𝑅𝐸)}))
Distinct variable groups:   𝑥,𝐷,   ,𝐹,𝑥   𝑥,𝐽   𝑥,𝑀   𝑥,𝑁   𝑥, 0   𝑥,𝑄   𝑥,𝑅   𝑥,   ,𝑋,𝑥   ,𝑌,𝑥   𝜑,   0 ,   𝐶,   𝐷,   ,𝐽   ,𝑀   ,𝑁   𝑅,   𝑈,   ,   ,𝐺,𝑥   ,𝐸   ,𝑍,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑄()   𝑈(𝑥)   𝐸(𝑥)   𝐻(𝑥,)   𝐼(𝑥,)   𝐾(𝑥,)   𝑉(𝑥,)   𝑊(𝑥,)

Proof of Theorem mapdheq4lem
StepHypRef Expression
1 mapdh.h . . . 4 𝐻 = (LHyp‘𝐾)
2 mapdh.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
3 mapdh.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 eqid 2734 . . . 4 (LSubSp‘𝑈) = (LSubSp‘𝑈)
5 mapdh.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
61, 3, 5dvhlmod 38818 . . . . 5 (𝜑𝑈 ∈ LMod)
7 mapdhe4.y . . . . . . 7 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
87eldifad 3869 . . . . . 6 (𝜑𝑌𝑉)
9 mapdh.v . . . . . . 7 𝑉 = (Base‘𝑈)
10 mapdh.n . . . . . . 7 𝑁 = (LSpan‘𝑈)
119, 4, 10lspsncl 19986 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
126, 8, 11syl2anc 587 . . . . 5 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
13 mapdhe.z . . . . . . 7 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
1413eldifad 3869 . . . . . 6 (𝜑𝑍𝑉)
159, 4, 10lspsncl 19986 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑍𝑉) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈))
166, 14, 15syl2anc 587 . . . . 5 (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈))
17 eqid 2734 . . . . . 6 (LSSum‘𝑈) = (LSSum‘𝑈)
184, 17lsmcl 20092 . . . . 5 ((𝑈 ∈ LMod ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈) ∧ (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈)) → ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∈ (LSubSp‘𝑈))
196, 12, 16, 18syl3anc 1373 . . . 4 (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∈ (LSubSp‘𝑈))
20 mapdhcl.x . . . . . . . 8 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
2120eldifad 3869 . . . . . . 7 (𝜑𝑋𝑉)
22 mapdh.s . . . . . . . 8 = (-g𝑈)
239, 22lmodvsubcl 19916 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
246, 21, 8, 23syl3anc 1373 . . . . . 6 (𝜑 → (𝑋 𝑌) ∈ 𝑉)
259, 4, 10lspsncl 19986 . . . . . 6 ((𝑈 ∈ LMod ∧ (𝑋 𝑌) ∈ 𝑉) → (𝑁‘{(𝑋 𝑌)}) ∈ (LSubSp‘𝑈))
266, 24, 25syl2anc 587 . . . . 5 (𝜑 → (𝑁‘{(𝑋 𝑌)}) ∈ (LSubSp‘𝑈))
279, 22lmodvsubcl 19916 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝑋𝑉𝑍𝑉) → (𝑋 𝑍) ∈ 𝑉)
286, 21, 14, 27syl3anc 1373 . . . . . 6 (𝜑 → (𝑋 𝑍) ∈ 𝑉)
299, 4, 10lspsncl 19986 . . . . . 6 ((𝑈 ∈ LMod ∧ (𝑋 𝑍) ∈ 𝑉) → (𝑁‘{(𝑋 𝑍)}) ∈ (LSubSp‘𝑈))
306, 28, 29syl2anc 587 . . . . 5 (𝜑 → (𝑁‘{(𝑋 𝑍)}) ∈ (LSubSp‘𝑈))
314, 17lsmcl 20092 . . . . 5 ((𝑈 ∈ LMod ∧ (𝑁‘{(𝑋 𝑌)}) ∈ (LSubSp‘𝑈) ∧ (𝑁‘{(𝑋 𝑍)}) ∈ (LSubSp‘𝑈)) → ((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{(𝑋 𝑍)})) ∈ (LSubSp‘𝑈))
326, 26, 30, 31syl3anc 1373 . . . 4 (𝜑 → ((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{(𝑋 𝑍)})) ∈ (LSubSp‘𝑈))
331, 2, 3, 4, 5, 19, 32mapdin 39370 . . 3 (𝜑 → (𝑀‘(((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{(𝑋 𝑍)})))) = ((𝑀‘((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) ∩ (𝑀‘((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{(𝑋 𝑍)})))))
34 mapdh.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
35 eqid 2734 . . . . . 6 (LSSum‘𝐶) = (LSSum‘𝐶)
361, 2, 3, 4, 17, 34, 35, 5, 12, 16mapdlsm 39372 . . . . 5 (𝜑 → (𝑀‘((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) = ((𝑀‘(𝑁‘{𝑌}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍}))))
37 mapdh.eg . . . . . . . 8 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
38 mapdh.q . . . . . . . . 9 𝑄 = (0g𝐶)
39 mapdh.i . . . . . . . . 9 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
40 mapdhc.o . . . . . . . . 9 0 = (0g𝑈)
41 mapdh.d . . . . . . . . 9 𝐷 = (Base‘𝐶)
42 mapdh.r . . . . . . . . 9 𝑅 = (-g𝐶)
43 mapdh.j . . . . . . . . 9 𝐽 = (LSpan‘𝐶)
44 mapdhc.f . . . . . . . . 9 (𝜑𝐹𝐷)
45 mapdh.mn . . . . . . . . 9 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
461, 3, 5dvhlvec 38817 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ LVec)
47 mapdh.yz . . . . . . . . . . . . 13 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
48 mapdh.xn . . . . . . . . . . . . 13 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
499, 40, 10, 46, 8, 13, 21, 47, 48lspindp2 20144 . . . . . . . . . . . 12 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌})))
5049simpld 498 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
5138, 39, 1, 2, 3, 9, 22, 40, 10, 34, 41, 42, 43, 5, 44, 45, 20, 8, 50mapdhcl 39435 . . . . . . . . . 10 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) ∈ 𝐷)
5237, 51eqeltrrd 2835 . . . . . . . . 9 (𝜑𝐺𝐷)
5338, 39, 1, 2, 3, 9, 22, 40, 10, 34, 41, 42, 43, 5, 44, 45, 20, 7, 52, 50mapdheq 39436 . . . . . . . 8 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))))
5437, 53mpbid 235 . . . . . . 7 (𝜑 → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)})))
5554simpld 498 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}))
56 mapdh.ee . . . . . . . 8 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
579, 40, 10, 46, 7, 14, 21, 47, 48lspindp1 20142 . . . . . . . . . . . 12 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}) ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})))
5857simpld 498 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
5938, 39, 1, 2, 3, 9, 22, 40, 10, 34, 41, 42, 43, 5, 44, 45, 20, 14, 58mapdhcl 39435 . . . . . . . . . 10 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) ∈ 𝐷)
6056, 59eqeltrrd 2835 . . . . . . . . 9 (𝜑𝐸𝐷)
6138, 39, 1, 2, 3, 9, 22, 40, 10, 34, 41, 42, 43, 5, 44, 45, 20, 13, 60, 58mapdheq 39436 . . . . . . . 8 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸 ↔ ((𝑀‘(𝑁‘{𝑍})) = (𝐽‘{𝐸}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑍)})) = (𝐽‘{(𝐹𝑅𝐸)}))))
6256, 61mpbid 235 . . . . . . 7 (𝜑 → ((𝑀‘(𝑁‘{𝑍})) = (𝐽‘{𝐸}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑍)})) = (𝐽‘{(𝐹𝑅𝐸)})))
6362simpld 498 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑍})) = (𝐽‘{𝐸}))
6455, 63oveq12d 7220 . . . . 5 (𝜑 → ((𝑀‘(𝑁‘{𝑌}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍}))) = ((𝐽‘{𝐺})(LSSum‘𝐶)(𝐽‘{𝐸})))
6536, 64eqtrd 2774 . . . 4 (𝜑 → (𝑀‘((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) = ((𝐽‘{𝐺})(LSSum‘𝐶)(𝐽‘{𝐸})))
661, 2, 3, 4, 17, 34, 35, 5, 26, 30mapdlsm 39372 . . . . 5 (𝜑 → (𝑀‘((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{(𝑋 𝑍)}))) = ((𝑀‘(𝑁‘{(𝑋 𝑌)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{(𝑋 𝑍)}))))
6754simprd 499 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐹𝑅𝐺)}))
6862simprd 499 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑍)})) = (𝐽‘{(𝐹𝑅𝐸)}))
6967, 68oveq12d 7220 . . . . 5 (𝜑 → ((𝑀‘(𝑁‘{(𝑋 𝑌)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{(𝑋 𝑍)}))) = ((𝐽‘{(𝐹𝑅𝐺)})(LSSum‘𝐶)(𝐽‘{(𝐹𝑅𝐸)})))
7066, 69eqtrd 2774 . . . 4 (𝜑 → (𝑀‘((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{(𝑋 𝑍)}))) = ((𝐽‘{(𝐹𝑅𝐺)})(LSSum‘𝐶)(𝐽‘{(𝐹𝑅𝐸)})))
7165, 70ineq12d 4118 . . 3 (𝜑 → ((𝑀‘((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) ∩ (𝑀‘((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{(𝑋 𝑍)})))) = (((𝐽‘{𝐺})(LSSum‘𝐶)(𝐽‘{𝐸})) ∩ ((𝐽‘{(𝐹𝑅𝐺)})(LSSum‘𝐶)(𝐽‘{(𝐹𝑅𝐸)}))))
7233, 71eqtrd 2774 . 2 (𝜑 → (𝑀‘(((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{(𝑋 𝑍)})))) = (((𝐽‘{𝐺})(LSSum‘𝐶)(𝐽‘{𝐸})) ∩ ((𝐽‘{(𝐹𝑅𝐺)})(LSSum‘𝐶)(𝐽‘{(𝐹𝑅𝐸)}))))
739, 22, 40, 17, 10, 46, 21, 48, 47, 7, 13baerlem3 39421 . . 3 (𝜑 → (𝑁‘{(𝑌 𝑍)}) = (((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{(𝑋 𝑍)}))))
7473fveq2d 6710 . 2 (𝜑 → (𝑀‘(𝑁‘{(𝑌 𝑍)})) = (𝑀‘(((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{(𝑋 𝑍)})))))
75 eqid 2734 . . 3 (0g𝐶) = (0g𝐶)
761, 34, 5lcdlvec 39299 . . 3 (𝜑𝐶 ∈ LVec)
771, 2, 3, 9, 10, 34, 41, 43, 5, 44, 45, 21, 8, 52, 55, 14, 60, 63, 48mapdindp 39379 . . 3 (𝜑 → ¬ 𝐹 ∈ (𝐽‘{𝐺, 𝐸}))
781, 2, 3, 9, 10, 34, 41, 43, 5, 52, 55, 8, 14, 60, 63, 47mapdncol 39378 . . 3 (𝜑 → (𝐽‘{𝐺}) ≠ (𝐽‘{𝐸}))
791, 2, 3, 9, 10, 34, 41, 43, 5, 52, 55, 40, 75, 7mapdn0 39377 . . 3 (𝜑𝐺 ∈ (𝐷 ∖ {(0g𝐶)}))
801, 2, 3, 9, 10, 34, 41, 43, 5, 60, 63, 40, 75, 13mapdn0 39377 . . 3 (𝜑𝐸 ∈ (𝐷 ∖ {(0g𝐶)}))
8141, 42, 75, 35, 43, 76, 44, 77, 78, 79, 80baerlem3 39421 . 2 (𝜑 → (𝐽‘{(𝐺𝑅𝐸)}) = (((𝐽‘{𝐺})(LSSum‘𝐶)(𝐽‘{𝐸})) ∩ ((𝐽‘{(𝐹𝑅𝐺)})(LSSum‘𝐶)(𝐽‘{(𝐹𝑅𝐸)}))))
8272, 74, 813eqtr4d 2784 1 (𝜑 → (𝑀‘(𝑁‘{(𝑌 𝑍)})) = (𝐽‘{(𝐺𝑅𝐸)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wcel 2110  wne 2935  Vcvv 3401  cdif 3854  cin 3856  ifcif 4429  {csn 4531  {cpr 4533  cotp 4539  cmpt 5124  cfv 6369  crio 7158  (class class class)co 7202  1st c1st 7748  2nd c2nd 7749  Basecbs 16684  0gc0g 16916  -gcsg 18339  LSSumclsm 18995  LModclmod 19871  LSubSpclss 19940  LSpanclspn 19980  HLchlt 37058  LHypclh 37692  DVecHcdvh 38786  LCDualclcd 39294  mapdcmpd 39332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-riotaBAD 36661
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-ot 4540  df-uni 4810  df-int 4850  df-iun 4896  df-iin 4897  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-of 7458  df-om 7634  df-1st 7750  df-2nd 7751  df-tpos 7957  df-undef 8004  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-map 8499  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-2 11876  df-3 11877  df-4 11878  df-5 11879  df-6 11880  df-n0 12074  df-z 12160  df-uz 12422  df-fz 13079  df-struct 16686  df-ndx 16687  df-slot 16688  df-base 16690  df-sets 16691  df-ress 16692  df-plusg 16780  df-mulr 16781  df-sca 16783  df-vsca 16784  df-0g 16918  df-mre 17061  df-mrc 17062  df-acs 17064  df-proset 17774  df-poset 17792  df-plt 17808  df-lub 17824  df-glb 17825  df-join 17826  df-meet 17827  df-p0 17903  df-p1 17904  df-lat 17910  df-clat 17977  df-mgm 18086  df-sgrp 18135  df-mnd 18146  df-submnd 18191  df-grp 18340  df-minusg 18341  df-sbg 18342  df-subg 18512  df-cntz 18683  df-oppg 18710  df-lsm 18997  df-cmn 19144  df-abl 19145  df-mgp 19477  df-ur 19489  df-ring 19536  df-oppr 19613  df-dvdsr 19631  df-unit 19632  df-invr 19662  df-dvr 19673  df-drng 19741  df-lmod 19873  df-lss 19941  df-lsp 19981  df-lvec 20112  df-lsatoms 36684  df-lshyp 36685  df-lcv 36727  df-lfl 36766  df-lkr 36794  df-ldual 36832  df-oposet 36884  df-ol 36886  df-oml 36887  df-covers 36974  df-ats 36975  df-atl 37006  df-cvlat 37030  df-hlat 37059  df-llines 37206  df-lplanes 37207  df-lvols 37208  df-lines 37209  df-psubsp 37211  df-pmap 37212  df-padd 37504  df-lhyp 37696  df-laut 37697  df-ldil 37812  df-ltrn 37813  df-trl 37867  df-tgrp 38451  df-tendo 38463  df-edring 38465  df-dveca 38711  df-disoa 38737  df-dvech 38787  df-dib 38847  df-dic 38881  df-dih 38937  df-doch 39056  df-djh 39103  df-lcdual 39295  df-mapd 39333
This theorem is referenced by:  mapdheq4  39440
  Copyright terms: Public domain W3C validator