Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdheq4lem Structured version   Visualization version   GIF version

Theorem mapdheq4lem 41115
Description: Lemma for mapdheq4 41116. Part (4) in [Baer] p. 46. (Contributed by NM, 12-Apr-2015.)
Hypotheses
Ref Expression
mapdh.q 𝑄 = (0gβ€˜πΆ)
mapdh.i 𝐼 = (π‘₯ ∈ V ↦ if((2nd β€˜π‘₯) = 0 , 𝑄, (β„©β„Ž ∈ 𝐷 ((π‘€β€˜(π‘β€˜{(2nd β€˜π‘₯)})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{((1st β€˜(1st β€˜π‘₯)) βˆ’ (2nd β€˜π‘₯))})) = (π½β€˜{((2nd β€˜(1st β€˜π‘₯))π‘…β„Ž)})))))
mapdh.h 𝐻 = (LHypβ€˜πΎ)
mapdh.m 𝑀 = ((mapdβ€˜πΎ)β€˜π‘Š)
mapdh.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
mapdh.v 𝑉 = (Baseβ€˜π‘ˆ)
mapdh.s βˆ’ = (-gβ€˜π‘ˆ)
mapdhc.o 0 = (0gβ€˜π‘ˆ)
mapdh.n 𝑁 = (LSpanβ€˜π‘ˆ)
mapdh.c 𝐢 = ((LCDualβ€˜πΎ)β€˜π‘Š)
mapdh.d 𝐷 = (Baseβ€˜πΆ)
mapdh.r 𝑅 = (-gβ€˜πΆ)
mapdh.j 𝐽 = (LSpanβ€˜πΆ)
mapdh.k (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
mapdhc.f (πœ‘ β†’ 𝐹 ∈ 𝐷)
mapdh.mn (πœ‘ β†’ (π‘€β€˜(π‘β€˜{𝑋})) = (π½β€˜{𝐹}))
mapdhcl.x (πœ‘ β†’ 𝑋 ∈ (𝑉 βˆ– { 0 }))
mapdhe4.y (πœ‘ β†’ π‘Œ ∈ (𝑉 βˆ– { 0 }))
mapdhe.z (πœ‘ β†’ 𝑍 ∈ (𝑉 βˆ– { 0 }))
mapdh.xn (πœ‘ β†’ Β¬ 𝑋 ∈ (π‘β€˜{π‘Œ, 𝑍}))
mapdh.yz (πœ‘ β†’ (π‘β€˜{π‘Œ}) β‰  (π‘β€˜{𝑍}))
mapdh.eg (πœ‘ β†’ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) = 𝐺)
mapdh.ee (πœ‘ β†’ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘βŸ©) = 𝐸)
Assertion
Ref Expression
mapdheq4lem (πœ‘ β†’ (π‘€β€˜(π‘β€˜{(π‘Œ βˆ’ 𝑍)})) = (π½β€˜{(𝐺𝑅𝐸)}))
Distinct variable groups:   π‘₯,𝐷,β„Ž   β„Ž,𝐹,π‘₯   π‘₯,𝐽   π‘₯,𝑀   π‘₯,𝑁   π‘₯, 0   π‘₯,𝑄   π‘₯,𝑅   π‘₯, βˆ’   β„Ž,𝑋,π‘₯   β„Ž,π‘Œ,π‘₯   πœ‘,β„Ž   0 ,β„Ž   𝐢,β„Ž   𝐷,β„Ž   β„Ž,𝐽   β„Ž,𝑀   β„Ž,𝑁   𝑅,β„Ž   π‘ˆ,β„Ž   βˆ’ ,β„Ž   β„Ž,𝐺,π‘₯   β„Ž,𝐸   β„Ž,𝑍,π‘₯
Allowed substitution hints:   πœ‘(π‘₯)   𝐢(π‘₯)   𝑄(β„Ž)   π‘ˆ(π‘₯)   𝐸(π‘₯)   𝐻(π‘₯,β„Ž)   𝐼(π‘₯,β„Ž)   𝐾(π‘₯,β„Ž)   𝑉(π‘₯,β„Ž)   π‘Š(π‘₯,β„Ž)

Proof of Theorem mapdheq4lem
StepHypRef Expression
1 mapdh.h . . . 4 𝐻 = (LHypβ€˜πΎ)
2 mapdh.m . . . 4 𝑀 = ((mapdβ€˜πΎ)β€˜π‘Š)
3 mapdh.u . . . 4 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
4 eqid 2726 . . . 4 (LSubSpβ€˜π‘ˆ) = (LSubSpβ€˜π‘ˆ)
5 mapdh.k . . . 4 (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
61, 3, 5dvhlmod 40494 . . . . 5 (πœ‘ β†’ π‘ˆ ∈ LMod)
7 mapdhe4.y . . . . . . 7 (πœ‘ β†’ π‘Œ ∈ (𝑉 βˆ– { 0 }))
87eldifad 3955 . . . . . 6 (πœ‘ β†’ π‘Œ ∈ 𝑉)
9 mapdh.v . . . . . . 7 𝑉 = (Baseβ€˜π‘ˆ)
10 mapdh.n . . . . . . 7 𝑁 = (LSpanβ€˜π‘ˆ)
119, 4, 10lspsncl 20824 . . . . . 6 ((π‘ˆ ∈ LMod ∧ π‘Œ ∈ 𝑉) β†’ (π‘β€˜{π‘Œ}) ∈ (LSubSpβ€˜π‘ˆ))
126, 8, 11syl2anc 583 . . . . 5 (πœ‘ β†’ (π‘β€˜{π‘Œ}) ∈ (LSubSpβ€˜π‘ˆ))
13 mapdhe.z . . . . . . 7 (πœ‘ β†’ 𝑍 ∈ (𝑉 βˆ– { 0 }))
1413eldifad 3955 . . . . . 6 (πœ‘ β†’ 𝑍 ∈ 𝑉)
159, 4, 10lspsncl 20824 . . . . . 6 ((π‘ˆ ∈ LMod ∧ 𝑍 ∈ 𝑉) β†’ (π‘β€˜{𝑍}) ∈ (LSubSpβ€˜π‘ˆ))
166, 14, 15syl2anc 583 . . . . 5 (πœ‘ β†’ (π‘β€˜{𝑍}) ∈ (LSubSpβ€˜π‘ˆ))
17 eqid 2726 . . . . . 6 (LSSumβ€˜π‘ˆ) = (LSSumβ€˜π‘ˆ)
184, 17lsmcl 20931 . . . . 5 ((π‘ˆ ∈ LMod ∧ (π‘β€˜{π‘Œ}) ∈ (LSubSpβ€˜π‘ˆ) ∧ (π‘β€˜{𝑍}) ∈ (LSubSpβ€˜π‘ˆ)) β†’ ((π‘β€˜{π‘Œ})(LSSumβ€˜π‘ˆ)(π‘β€˜{𝑍})) ∈ (LSubSpβ€˜π‘ˆ))
196, 12, 16, 18syl3anc 1368 . . . 4 (πœ‘ β†’ ((π‘β€˜{π‘Œ})(LSSumβ€˜π‘ˆ)(π‘β€˜{𝑍})) ∈ (LSubSpβ€˜π‘ˆ))
20 mapdhcl.x . . . . . . . 8 (πœ‘ β†’ 𝑋 ∈ (𝑉 βˆ– { 0 }))
2120eldifad 3955 . . . . . . 7 (πœ‘ β†’ 𝑋 ∈ 𝑉)
22 mapdh.s . . . . . . . 8 βˆ’ = (-gβ€˜π‘ˆ)
239, 22lmodvsubcl 20753 . . . . . . 7 ((π‘ˆ ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (𝑋 βˆ’ π‘Œ) ∈ 𝑉)
246, 21, 8, 23syl3anc 1368 . . . . . 6 (πœ‘ β†’ (𝑋 βˆ’ π‘Œ) ∈ 𝑉)
259, 4, 10lspsncl 20824 . . . . . 6 ((π‘ˆ ∈ LMod ∧ (𝑋 βˆ’ π‘Œ) ∈ 𝑉) β†’ (π‘β€˜{(𝑋 βˆ’ π‘Œ)}) ∈ (LSubSpβ€˜π‘ˆ))
266, 24, 25syl2anc 583 . . . . 5 (πœ‘ β†’ (π‘β€˜{(𝑋 βˆ’ π‘Œ)}) ∈ (LSubSpβ€˜π‘ˆ))
279, 22lmodvsubcl 20753 . . . . . . 7 ((π‘ˆ ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉) β†’ (𝑋 βˆ’ 𝑍) ∈ 𝑉)
286, 21, 14, 27syl3anc 1368 . . . . . 6 (πœ‘ β†’ (𝑋 βˆ’ 𝑍) ∈ 𝑉)
299, 4, 10lspsncl 20824 . . . . . 6 ((π‘ˆ ∈ LMod ∧ (𝑋 βˆ’ 𝑍) ∈ 𝑉) β†’ (π‘β€˜{(𝑋 βˆ’ 𝑍)}) ∈ (LSubSpβ€˜π‘ˆ))
306, 28, 29syl2anc 583 . . . . 5 (πœ‘ β†’ (π‘β€˜{(𝑋 βˆ’ 𝑍)}) ∈ (LSubSpβ€˜π‘ˆ))
314, 17lsmcl 20931 . . . . 5 ((π‘ˆ ∈ LMod ∧ (π‘β€˜{(𝑋 βˆ’ π‘Œ)}) ∈ (LSubSpβ€˜π‘ˆ) ∧ (π‘β€˜{(𝑋 βˆ’ 𝑍)}) ∈ (LSubSpβ€˜π‘ˆ)) β†’ ((π‘β€˜{(𝑋 βˆ’ π‘Œ)})(LSSumβ€˜π‘ˆ)(π‘β€˜{(𝑋 βˆ’ 𝑍)})) ∈ (LSubSpβ€˜π‘ˆ))
326, 26, 30, 31syl3anc 1368 . . . 4 (πœ‘ β†’ ((π‘β€˜{(𝑋 βˆ’ π‘Œ)})(LSSumβ€˜π‘ˆ)(π‘β€˜{(𝑋 βˆ’ 𝑍)})) ∈ (LSubSpβ€˜π‘ˆ))
331, 2, 3, 4, 5, 19, 32mapdin 41046 . . 3 (πœ‘ β†’ (π‘€β€˜(((π‘β€˜{π‘Œ})(LSSumβ€˜π‘ˆ)(π‘β€˜{𝑍})) ∩ ((π‘β€˜{(𝑋 βˆ’ π‘Œ)})(LSSumβ€˜π‘ˆ)(π‘β€˜{(𝑋 βˆ’ 𝑍)})))) = ((π‘€β€˜((π‘β€˜{π‘Œ})(LSSumβ€˜π‘ˆ)(π‘β€˜{𝑍}))) ∩ (π‘€β€˜((π‘β€˜{(𝑋 βˆ’ π‘Œ)})(LSSumβ€˜π‘ˆ)(π‘β€˜{(𝑋 βˆ’ 𝑍)})))))
34 mapdh.c . . . . . 6 𝐢 = ((LCDualβ€˜πΎ)β€˜π‘Š)
35 eqid 2726 . . . . . 6 (LSSumβ€˜πΆ) = (LSSumβ€˜πΆ)
361, 2, 3, 4, 17, 34, 35, 5, 12, 16mapdlsm 41048 . . . . 5 (πœ‘ β†’ (π‘€β€˜((π‘β€˜{π‘Œ})(LSSumβ€˜π‘ˆ)(π‘β€˜{𝑍}))) = ((π‘€β€˜(π‘β€˜{π‘Œ}))(LSSumβ€˜πΆ)(π‘€β€˜(π‘β€˜{𝑍}))))
37 mapdh.eg . . . . . . . 8 (πœ‘ β†’ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) = 𝐺)
38 mapdh.q . . . . . . . . 9 𝑄 = (0gβ€˜πΆ)
39 mapdh.i . . . . . . . . 9 𝐼 = (π‘₯ ∈ V ↦ if((2nd β€˜π‘₯) = 0 , 𝑄, (β„©β„Ž ∈ 𝐷 ((π‘€β€˜(π‘β€˜{(2nd β€˜π‘₯)})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{((1st β€˜(1st β€˜π‘₯)) βˆ’ (2nd β€˜π‘₯))})) = (π½β€˜{((2nd β€˜(1st β€˜π‘₯))π‘…β„Ž)})))))
40 mapdhc.o . . . . . . . . 9 0 = (0gβ€˜π‘ˆ)
41 mapdh.d . . . . . . . . 9 𝐷 = (Baseβ€˜πΆ)
42 mapdh.r . . . . . . . . 9 𝑅 = (-gβ€˜πΆ)
43 mapdh.j . . . . . . . . 9 𝐽 = (LSpanβ€˜πΆ)
44 mapdhc.f . . . . . . . . 9 (πœ‘ β†’ 𝐹 ∈ 𝐷)
45 mapdh.mn . . . . . . . . 9 (πœ‘ β†’ (π‘€β€˜(π‘β€˜{𝑋})) = (π½β€˜{𝐹}))
461, 3, 5dvhlvec 40493 . . . . . . . . . . . . 13 (πœ‘ β†’ π‘ˆ ∈ LVec)
47 mapdh.yz . . . . . . . . . . . . 13 (πœ‘ β†’ (π‘β€˜{π‘Œ}) β‰  (π‘β€˜{𝑍}))
48 mapdh.xn . . . . . . . . . . . . 13 (πœ‘ β†’ Β¬ 𝑋 ∈ (π‘β€˜{π‘Œ, 𝑍}))
499, 40, 10, 46, 8, 13, 21, 47, 48lspindp2 20986 . . . . . . . . . . . 12 (πœ‘ β†’ ((π‘β€˜{𝑋}) β‰  (π‘β€˜{π‘Œ}) ∧ Β¬ 𝑍 ∈ (π‘β€˜{𝑋, π‘Œ})))
5049simpld 494 . . . . . . . . . . 11 (πœ‘ β†’ (π‘β€˜{𝑋}) β‰  (π‘β€˜{π‘Œ}))
5138, 39, 1, 2, 3, 9, 22, 40, 10, 34, 41, 42, 43, 5, 44, 45, 20, 8, 50mapdhcl 41111 . . . . . . . . . 10 (πœ‘ β†’ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) ∈ 𝐷)
5237, 51eqeltrrd 2828 . . . . . . . . 9 (πœ‘ β†’ 𝐺 ∈ 𝐷)
5338, 39, 1, 2, 3, 9, 22, 40, 10, 34, 41, 42, 43, 5, 44, 45, 20, 7, 52, 50mapdheq 41112 . . . . . . . 8 (πœ‘ β†’ ((πΌβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) = 𝐺 ↔ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝐺}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐹𝑅𝐺)}))))
5437, 53mpbid 231 . . . . . . 7 (πœ‘ β†’ ((π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝐺}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐹𝑅𝐺)})))
5554simpld 494 . . . . . 6 (πœ‘ β†’ (π‘€β€˜(π‘β€˜{π‘Œ})) = (π½β€˜{𝐺}))
56 mapdh.ee . . . . . . . 8 (πœ‘ β†’ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘βŸ©) = 𝐸)
579, 40, 10, 46, 7, 14, 21, 47, 48lspindp1 20984 . . . . . . . . . . . 12 (πœ‘ β†’ ((π‘β€˜{𝑋}) β‰  (π‘β€˜{𝑍}) ∧ Β¬ π‘Œ ∈ (π‘β€˜{𝑋, 𝑍})))
5857simpld 494 . . . . . . . . . . 11 (πœ‘ β†’ (π‘β€˜{𝑋}) β‰  (π‘β€˜{𝑍}))
5938, 39, 1, 2, 3, 9, 22, 40, 10, 34, 41, 42, 43, 5, 44, 45, 20, 14, 58mapdhcl 41111 . . . . . . . . . 10 (πœ‘ β†’ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘βŸ©) ∈ 𝐷)
6056, 59eqeltrrd 2828 . . . . . . . . 9 (πœ‘ β†’ 𝐸 ∈ 𝐷)
6138, 39, 1, 2, 3, 9, 22, 40, 10, 34, 41, 42, 43, 5, 44, 45, 20, 13, 60, 58mapdheq 41112 . . . . . . . 8 (πœ‘ β†’ ((πΌβ€˜βŸ¨π‘‹, 𝐹, π‘βŸ©) = 𝐸 ↔ ((π‘€β€˜(π‘β€˜{𝑍})) = (π½β€˜{𝐸}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ 𝑍)})) = (π½β€˜{(𝐹𝑅𝐸)}))))
6256, 61mpbid 231 . . . . . . 7 (πœ‘ β†’ ((π‘€β€˜(π‘β€˜{𝑍})) = (π½β€˜{𝐸}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ 𝑍)})) = (π½β€˜{(𝐹𝑅𝐸)})))
6362simpld 494 . . . . . 6 (πœ‘ β†’ (π‘€β€˜(π‘β€˜{𝑍})) = (π½β€˜{𝐸}))
6455, 63oveq12d 7423 . . . . 5 (πœ‘ β†’ ((π‘€β€˜(π‘β€˜{π‘Œ}))(LSSumβ€˜πΆ)(π‘€β€˜(π‘β€˜{𝑍}))) = ((π½β€˜{𝐺})(LSSumβ€˜πΆ)(π½β€˜{𝐸})))
6536, 64eqtrd 2766 . . . 4 (πœ‘ β†’ (π‘€β€˜((π‘β€˜{π‘Œ})(LSSumβ€˜π‘ˆ)(π‘β€˜{𝑍}))) = ((π½β€˜{𝐺})(LSSumβ€˜πΆ)(π½β€˜{𝐸})))
661, 2, 3, 4, 17, 34, 35, 5, 26, 30mapdlsm 41048 . . . . 5 (πœ‘ β†’ (π‘€β€˜((π‘β€˜{(𝑋 βˆ’ π‘Œ)})(LSSumβ€˜π‘ˆ)(π‘β€˜{(𝑋 βˆ’ 𝑍)}))) = ((π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)}))(LSSumβ€˜πΆ)(π‘€β€˜(π‘β€˜{(𝑋 βˆ’ 𝑍)}))))
6754simprd 495 . . . . . 6 (πœ‘ β†’ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)})) = (π½β€˜{(𝐹𝑅𝐺)}))
6862simprd 495 . . . . . 6 (πœ‘ β†’ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ 𝑍)})) = (π½β€˜{(𝐹𝑅𝐸)}))
6967, 68oveq12d 7423 . . . . 5 (πœ‘ β†’ ((π‘€β€˜(π‘β€˜{(𝑋 βˆ’ π‘Œ)}))(LSSumβ€˜πΆ)(π‘€β€˜(π‘β€˜{(𝑋 βˆ’ 𝑍)}))) = ((π½β€˜{(𝐹𝑅𝐺)})(LSSumβ€˜πΆ)(π½β€˜{(𝐹𝑅𝐸)})))
7066, 69eqtrd 2766 . . . 4 (πœ‘ β†’ (π‘€β€˜((π‘β€˜{(𝑋 βˆ’ π‘Œ)})(LSSumβ€˜π‘ˆ)(π‘β€˜{(𝑋 βˆ’ 𝑍)}))) = ((π½β€˜{(𝐹𝑅𝐺)})(LSSumβ€˜πΆ)(π½β€˜{(𝐹𝑅𝐸)})))
7165, 70ineq12d 4208 . . 3 (πœ‘ β†’ ((π‘€β€˜((π‘β€˜{π‘Œ})(LSSumβ€˜π‘ˆ)(π‘β€˜{𝑍}))) ∩ (π‘€β€˜((π‘β€˜{(𝑋 βˆ’ π‘Œ)})(LSSumβ€˜π‘ˆ)(π‘β€˜{(𝑋 βˆ’ 𝑍)})))) = (((π½β€˜{𝐺})(LSSumβ€˜πΆ)(π½β€˜{𝐸})) ∩ ((π½β€˜{(𝐹𝑅𝐺)})(LSSumβ€˜πΆ)(π½β€˜{(𝐹𝑅𝐸)}))))
7233, 71eqtrd 2766 . 2 (πœ‘ β†’ (π‘€β€˜(((π‘β€˜{π‘Œ})(LSSumβ€˜π‘ˆ)(π‘β€˜{𝑍})) ∩ ((π‘β€˜{(𝑋 βˆ’ π‘Œ)})(LSSumβ€˜π‘ˆ)(π‘β€˜{(𝑋 βˆ’ 𝑍)})))) = (((π½β€˜{𝐺})(LSSumβ€˜πΆ)(π½β€˜{𝐸})) ∩ ((π½β€˜{(𝐹𝑅𝐺)})(LSSumβ€˜πΆ)(π½β€˜{(𝐹𝑅𝐸)}))))
739, 22, 40, 17, 10, 46, 21, 48, 47, 7, 13baerlem3 41097 . . 3 (πœ‘ β†’ (π‘β€˜{(π‘Œ βˆ’ 𝑍)}) = (((π‘β€˜{π‘Œ})(LSSumβ€˜π‘ˆ)(π‘β€˜{𝑍})) ∩ ((π‘β€˜{(𝑋 βˆ’ π‘Œ)})(LSSumβ€˜π‘ˆ)(π‘β€˜{(𝑋 βˆ’ 𝑍)}))))
7473fveq2d 6889 . 2 (πœ‘ β†’ (π‘€β€˜(π‘β€˜{(π‘Œ βˆ’ 𝑍)})) = (π‘€β€˜(((π‘β€˜{π‘Œ})(LSSumβ€˜π‘ˆ)(π‘β€˜{𝑍})) ∩ ((π‘β€˜{(𝑋 βˆ’ π‘Œ)})(LSSumβ€˜π‘ˆ)(π‘β€˜{(𝑋 βˆ’ 𝑍)})))))
75 eqid 2726 . . 3 (0gβ€˜πΆ) = (0gβ€˜πΆ)
761, 34, 5lcdlvec 40975 . . 3 (πœ‘ β†’ 𝐢 ∈ LVec)
771, 2, 3, 9, 10, 34, 41, 43, 5, 44, 45, 21, 8, 52, 55, 14, 60, 63, 48mapdindp 41055 . . 3 (πœ‘ β†’ Β¬ 𝐹 ∈ (π½β€˜{𝐺, 𝐸}))
781, 2, 3, 9, 10, 34, 41, 43, 5, 52, 55, 8, 14, 60, 63, 47mapdncol 41054 . . 3 (πœ‘ β†’ (π½β€˜{𝐺}) β‰  (π½β€˜{𝐸}))
791, 2, 3, 9, 10, 34, 41, 43, 5, 52, 55, 40, 75, 7mapdn0 41053 . . 3 (πœ‘ β†’ 𝐺 ∈ (𝐷 βˆ– {(0gβ€˜πΆ)}))
801, 2, 3, 9, 10, 34, 41, 43, 5, 60, 63, 40, 75, 13mapdn0 41053 . . 3 (πœ‘ β†’ 𝐸 ∈ (𝐷 βˆ– {(0gβ€˜πΆ)}))
8141, 42, 75, 35, 43, 76, 44, 77, 78, 79, 80baerlem3 41097 . 2 (πœ‘ β†’ (π½β€˜{(𝐺𝑅𝐸)}) = (((π½β€˜{𝐺})(LSSumβ€˜πΆ)(π½β€˜{𝐸})) ∩ ((π½β€˜{(𝐹𝑅𝐺)})(LSSumβ€˜πΆ)(π½β€˜{(𝐹𝑅𝐸)}))))
8272, 74, 813eqtr4d 2776 1 (πœ‘ β†’ (π‘€β€˜(π‘β€˜{(π‘Œ βˆ’ 𝑍)})) = (π½β€˜{(𝐺𝑅𝐸)}))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098   β‰  wne 2934  Vcvv 3468   βˆ– cdif 3940   ∩ cin 3942  ifcif 4523  {csn 4623  {cpr 4625  βŸ¨cotp 4631   ↦ cmpt 5224  β€˜cfv 6537  β„©crio 7360  (class class class)co 7405  1st c1st 7972  2nd c2nd 7973  Basecbs 17153  0gc0g 17394  -gcsg 18865  LSSumclsm 19554  LModclmod 20706  LSubSpclss 20778  LSpanclspn 20818  HLchlt 38733  LHypclh 39368  DVecHcdvh 40462  LCDualclcd 40970  mapdcmpd 41008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-riotaBAD 38336
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-ot 4632  df-uni 4903  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7667  df-om 7853  df-1st 7974  df-2nd 7975  df-tpos 8212  df-undef 8259  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13491  df-struct 17089  df-sets 17106  df-slot 17124  df-ndx 17136  df-base 17154  df-ress 17183  df-plusg 17219  df-mulr 17220  df-sca 17222  df-vsca 17223  df-0g 17396  df-mre 17539  df-mrc 17540  df-acs 17542  df-proset 18260  df-poset 18278  df-plt 18295  df-lub 18311  df-glb 18312  df-join 18313  df-meet 18314  df-p0 18390  df-p1 18391  df-lat 18397  df-clat 18464  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-submnd 18714  df-grp 18866  df-minusg 18867  df-sbg 18868  df-subg 19050  df-cntz 19233  df-oppg 19262  df-lsm 19556  df-cmn 19702  df-abl 19703  df-mgp 20040  df-rng 20058  df-ur 20087  df-ring 20140  df-oppr 20236  df-dvdsr 20259  df-unit 20260  df-invr 20290  df-dvr 20303  df-drng 20589  df-lmod 20708  df-lss 20779  df-lsp 20819  df-lvec 20951  df-lsatoms 38359  df-lshyp 38360  df-lcv 38402  df-lfl 38441  df-lkr 38469  df-ldual 38507  df-oposet 38559  df-ol 38561  df-oml 38562  df-covers 38649  df-ats 38650  df-atl 38681  df-cvlat 38705  df-hlat 38734  df-llines 38882  df-lplanes 38883  df-lvols 38884  df-lines 38885  df-psubsp 38887  df-pmap 38888  df-padd 39180  df-lhyp 39372  df-laut 39373  df-ldil 39488  df-ltrn 39489  df-trl 39543  df-tgrp 40127  df-tendo 40139  df-edring 40141  df-dveca 40387  df-disoa 40413  df-dvech 40463  df-dib 40523  df-dic 40557  df-dih 40613  df-doch 40732  df-djh 40779  df-lcdual 40971  df-mapd 41009
This theorem is referenced by:  mapdheq4  41116
  Copyright terms: Public domain W3C validator