Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1l6lem1 Structured version   Visualization version   GIF version

Theorem hdmap1l6lem1 39464
Description: Lemma for hdmap1l6 39478. Part (6) in [Baer] p. 47, lines 16-18. (Contributed by NM, 13-Apr-2015.)
Hypotheses
Ref Expression
hdmap1l6.h 𝐻 = (LHyp‘𝐾)
hdmap1l6.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap1l6.v 𝑉 = (Base‘𝑈)
hdmap1l6.p + = (+g𝑈)
hdmap1l6.s = (-g𝑈)
hdmap1l6c.o 0 = (0g𝑈)
hdmap1l6.n 𝑁 = (LSpan‘𝑈)
hdmap1l6.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap1l6.d 𝐷 = (Base‘𝐶)
hdmap1l6.a = (+g𝐶)
hdmap1l6.r 𝑅 = (-g𝐶)
hdmap1l6.q 𝑄 = (0g𝐶)
hdmap1l6.l 𝐿 = (LSpan‘𝐶)
hdmap1l6.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap1l6.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmap1l6.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap1l6.f (𝜑𝐹𝐷)
hdmap1l6cl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hdmap1l6.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
hdmap1l6e.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
hdmap1l6e.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
hdmap1l6e.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
hdmap1l6.yz (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
hdmap1l6.fg (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
hdmap1l6.fe (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
Assertion
Ref Expression
hdmap1l6lem1 (𝜑 → (𝑀‘(𝑁‘{(𝑋 (𝑌 + 𝑍))})) = (𝐿‘{(𝐹𝑅(𝐺 𝐸))}))

Proof of Theorem hdmap1l6lem1
StepHypRef Expression
1 hdmap1l6.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hdmap1l6.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
3 hdmap1l6.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 eqid 2738 . . . 4 (LSubSp‘𝑈) = (LSubSp‘𝑈)
5 hdmap1l6.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
61, 3, 5dvhlmod 38767 . . . . 5 (𝜑𝑈 ∈ LMod)
7 hdmap1l6cl.x . . . . . . . 8 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
87eldifad 3855 . . . . . . 7 (𝜑𝑋𝑉)
9 hdmap1l6e.y . . . . . . . 8 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
109eldifad 3855 . . . . . . 7 (𝜑𝑌𝑉)
11 hdmap1l6.v . . . . . . . 8 𝑉 = (Base‘𝑈)
12 hdmap1l6.s . . . . . . . 8 = (-g𝑈)
1311, 12lmodvsubcl 19798 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
146, 8, 10, 13syl3anc 1372 . . . . . 6 (𝜑 → (𝑋 𝑌) ∈ 𝑉)
15 hdmap1l6.n . . . . . . 7 𝑁 = (LSpan‘𝑈)
1611, 4, 15lspsncl 19868 . . . . . 6 ((𝑈 ∈ LMod ∧ (𝑋 𝑌) ∈ 𝑉) → (𝑁‘{(𝑋 𝑌)}) ∈ (LSubSp‘𝑈))
176, 14, 16syl2anc 587 . . . . 5 (𝜑 → (𝑁‘{(𝑋 𝑌)}) ∈ (LSubSp‘𝑈))
18 hdmap1l6e.z . . . . . . 7 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
1918eldifad 3855 . . . . . 6 (𝜑𝑍𝑉)
2011, 4, 15lspsncl 19868 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑍𝑉) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈))
216, 19, 20syl2anc 587 . . . . 5 (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈))
22 eqid 2738 . . . . . 6 (LSSum‘𝑈) = (LSSum‘𝑈)
234, 22lsmcl 19974 . . . . 5 ((𝑈 ∈ LMod ∧ (𝑁‘{(𝑋 𝑌)}) ∈ (LSubSp‘𝑈) ∧ (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈)) → ((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍})) ∈ (LSubSp‘𝑈))
246, 17, 21, 23syl3anc 1372 . . . 4 (𝜑 → ((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍})) ∈ (LSubSp‘𝑈))
2511, 12lmodvsubcl 19798 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝑋𝑉𝑍𝑉) → (𝑋 𝑍) ∈ 𝑉)
266, 8, 19, 25syl3anc 1372 . . . . . 6 (𝜑 → (𝑋 𝑍) ∈ 𝑉)
2711, 4, 15lspsncl 19868 . . . . . 6 ((𝑈 ∈ LMod ∧ (𝑋 𝑍) ∈ 𝑉) → (𝑁‘{(𝑋 𝑍)}) ∈ (LSubSp‘𝑈))
286, 26, 27syl2anc 587 . . . . 5 (𝜑 → (𝑁‘{(𝑋 𝑍)}) ∈ (LSubSp‘𝑈))
2911, 4, 15lspsncl 19868 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
306, 10, 29syl2anc 587 . . . . 5 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
314, 22lsmcl 19974 . . . . 5 ((𝑈 ∈ LMod ∧ (𝑁‘{(𝑋 𝑍)}) ∈ (LSubSp‘𝑈) ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) → ((𝑁‘{(𝑋 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌})) ∈ (LSubSp‘𝑈))
326, 28, 30, 31syl3anc 1372 . . . 4 (𝜑 → ((𝑁‘{(𝑋 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌})) ∈ (LSubSp‘𝑈))
331, 2, 3, 4, 5, 24, 32mapdin 39319 . . 3 (𝜑 → (𝑀‘(((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌})))) = ((𝑀‘((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍}))) ∩ (𝑀‘((𝑁‘{(𝑋 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌})))))
34 hdmap1l6.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
35 eqid 2738 . . . . . 6 (LSSum‘𝐶) = (LSSum‘𝐶)
361, 2, 3, 4, 22, 34, 35, 5, 17, 21mapdlsm 39321 . . . . 5 (𝜑 → (𝑀‘((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍}))) = ((𝑀‘(𝑁‘{(𝑋 𝑌)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍}))))
371, 2, 3, 4, 22, 34, 35, 5, 28, 30mapdlsm 39321 . . . . 5 (𝜑 → (𝑀‘((𝑁‘{(𝑋 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌}))) = ((𝑀‘(𝑁‘{(𝑋 𝑍)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))))
3836, 37ineq12d 4104 . . . 4 (𝜑 → ((𝑀‘((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍}))) ∩ (𝑀‘((𝑁‘{(𝑋 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌})))) = (((𝑀‘(𝑁‘{(𝑋 𝑌)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍}))) ∩ ((𝑀‘(𝑁‘{(𝑋 𝑍)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌})))))
39 hdmap1l6.fg . . . . . . . 8 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
40 hdmap1l6c.o . . . . . . . . 9 0 = (0g𝑈)
41 hdmap1l6.d . . . . . . . . 9 𝐷 = (Base‘𝐶)
42 hdmap1l6.r . . . . . . . . 9 𝑅 = (-g𝐶)
43 hdmap1l6.l . . . . . . . . 9 𝐿 = (LSpan‘𝐶)
44 hdmap1l6.i . . . . . . . . 9 𝐼 = ((HDMap1‘𝐾)‘𝑊)
45 hdmap1l6.f . . . . . . . . 9 (𝜑𝐹𝐷)
46 hdmap1l6.mn . . . . . . . . . . 11 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
471, 3, 5dvhlvec 38766 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ LVec)
48 hdmap1l6.yz . . . . . . . . . . . . 13 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
49 hdmap1l6e.xn . . . . . . . . . . . . 13 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
5011, 40, 15, 47, 10, 18, 8, 48, 49lspindp2 20026 . . . . . . . . . . . 12 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌})))
5150simpld 498 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
521, 3, 11, 40, 15, 34, 41, 43, 2, 44, 5, 45, 46, 51, 7, 10hdmap1cl 39461 . . . . . . . . . 10 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) ∈ 𝐷)
5339, 52eqeltrrd 2834 . . . . . . . . 9 (𝜑𝐺𝐷)
541, 3, 11, 12, 40, 15, 34, 41, 42, 43, 2, 44, 5, 7, 45, 9, 53, 51, 46hdmap1eq 39458 . . . . . . . 8 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)}))))
5539, 54mpbid 235 . . . . . . 7 (𝜑 → ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)})))
5655simprd 499 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)}))
57 hdmap1l6.fe . . . . . . . 8 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
5811, 40, 15, 47, 9, 19, 8, 48, 49lspindp1 20024 . . . . . . . . . . . 12 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}) ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})))
5958simpld 498 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
601, 3, 11, 40, 15, 34, 41, 43, 2, 44, 5, 45, 46, 59, 7, 19hdmap1cl 39461 . . . . . . . . . 10 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) ∈ 𝐷)
6157, 60eqeltrrd 2834 . . . . . . . . 9 (𝜑𝐸𝐷)
621, 3, 11, 12, 40, 15, 34, 41, 42, 43, 2, 44, 5, 7, 45, 18, 61, 59, 46hdmap1eq 39458 . . . . . . . 8 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸 ↔ ((𝑀‘(𝑁‘{𝑍})) = (𝐿‘{𝐸}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑍)})) = (𝐿‘{(𝐹𝑅𝐸)}))))
6357, 62mpbid 235 . . . . . . 7 (𝜑 → ((𝑀‘(𝑁‘{𝑍})) = (𝐿‘{𝐸}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑍)})) = (𝐿‘{(𝐹𝑅𝐸)})))
6463simpld 498 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑍})) = (𝐿‘{𝐸}))
6556, 64oveq12d 7188 . . . . 5 (𝜑 → ((𝑀‘(𝑁‘{(𝑋 𝑌)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍}))) = ((𝐿‘{(𝐹𝑅𝐺)})(LSSum‘𝐶)(𝐿‘{𝐸})))
6663simprd 499 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑍)})) = (𝐿‘{(𝐹𝑅𝐸)}))
6755simpld 498 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}))
6866, 67oveq12d 7188 . . . . 5 (𝜑 → ((𝑀‘(𝑁‘{(𝑋 𝑍)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) = ((𝐿‘{(𝐹𝑅𝐸)})(LSSum‘𝐶)(𝐿‘{𝐺})))
6965, 68ineq12d 4104 . . . 4 (𝜑 → (((𝑀‘(𝑁‘{(𝑋 𝑌)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍}))) ∩ ((𝑀‘(𝑁‘{(𝑋 𝑍)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌})))) = (((𝐿‘{(𝐹𝑅𝐺)})(LSSum‘𝐶)(𝐿‘{𝐸})) ∩ ((𝐿‘{(𝐹𝑅𝐸)})(LSSum‘𝐶)(𝐿‘{𝐺}))))
7038, 69eqtrd 2773 . . 3 (𝜑 → ((𝑀‘((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍}))) ∩ (𝑀‘((𝑁‘{(𝑋 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌})))) = (((𝐿‘{(𝐹𝑅𝐺)})(LSSum‘𝐶)(𝐿‘{𝐸})) ∩ ((𝐿‘{(𝐹𝑅𝐸)})(LSSum‘𝐶)(𝐿‘{𝐺}))))
7133, 70eqtrd 2773 . 2 (𝜑 → (𝑀‘(((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌})))) = (((𝐿‘{(𝐹𝑅𝐺)})(LSSum‘𝐶)(𝐿‘{𝐸})) ∩ ((𝐿‘{(𝐹𝑅𝐸)})(LSSum‘𝐶)(𝐿‘{𝐺}))))
72 hdmap1l6.p . . . 4 + = (+g𝑈)
7311, 12, 40, 22, 15, 47, 8, 49, 48, 9, 18, 72baerlem5a 39371 . . 3 (𝜑 → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) = (((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌}))))
7473fveq2d 6678 . 2 (𝜑 → (𝑀‘(𝑁‘{(𝑋 (𝑌 + 𝑍))})) = (𝑀‘(((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌})))))
75 hdmap1l6.q . . 3 𝑄 = (0g𝐶)
761, 34, 5lcdlvec 39248 . . 3 (𝜑𝐶 ∈ LVec)
771, 2, 3, 11, 15, 34, 41, 43, 5, 45, 46, 8, 10, 53, 67, 19, 61, 64, 49mapdindp 39328 . . 3 (𝜑 → ¬ 𝐹 ∈ (𝐿‘{𝐺, 𝐸}))
781, 2, 3, 11, 15, 34, 41, 43, 5, 53, 67, 10, 19, 61, 64, 48mapdncol 39327 . . 3 (𝜑 → (𝐿‘{𝐺}) ≠ (𝐿‘{𝐸}))
791, 2, 3, 11, 15, 34, 41, 43, 5, 53, 67, 40, 75, 9mapdn0 39326 . . 3 (𝜑𝐺 ∈ (𝐷 ∖ {𝑄}))
801, 2, 3, 11, 15, 34, 41, 43, 5, 61, 64, 40, 75, 18mapdn0 39326 . . 3 (𝜑𝐸 ∈ (𝐷 ∖ {𝑄}))
81 hdmap1l6.a . . 3 = (+g𝐶)
8241, 42, 75, 35, 43, 76, 45, 77, 78, 79, 80, 81baerlem5a 39371 . 2 (𝜑 → (𝐿‘{(𝐹𝑅(𝐺 𝐸))}) = (((𝐿‘{(𝐹𝑅𝐺)})(LSSum‘𝐶)(𝐿‘{𝐸})) ∩ ((𝐿‘{(𝐹𝑅𝐸)})(LSSum‘𝐶)(𝐿‘{𝐺}))))
8371, 74, 823eqtr4d 2783 1 (𝜑 → (𝑀‘(𝑁‘{(𝑋 (𝑌 + 𝑍))})) = (𝐿‘{(𝐹𝑅(𝐺 𝐸))}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1542  wcel 2114  wne 2934  cdif 3840  cin 3842  {csn 4516  {cpr 4518  cotp 4524  cfv 6339  (class class class)co 7170  Basecbs 16586  +gcplusg 16668  0gc0g 16816  -gcsg 18221  LSSumclsm 18877  LModclmod 19753  LSubSpclss 19822  LSpanclspn 19862  HLchlt 37007  LHypclh 37641  DVecHcdvh 38735  LCDualclcd 39243  mapdcmpd 39281  HDMap1chdma1 39448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-riotaBAD 36610
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-ot 4525  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-of 7425  df-om 7600  df-1st 7714  df-2nd 7715  df-tpos 7921  df-undef 7968  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-er 8320  df-map 8439  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-5 11782  df-6 11783  df-n0 11977  df-z 12063  df-uz 12325  df-fz 12982  df-struct 16588  df-ndx 16589  df-slot 16590  df-base 16592  df-sets 16593  df-ress 16594  df-plusg 16681  df-mulr 16682  df-sca 16684  df-vsca 16685  df-0g 16818  df-mre 16960  df-mrc 16961  df-acs 16963  df-proset 17654  df-poset 17672  df-plt 17684  df-lub 17700  df-glb 17701  df-join 17702  df-meet 17703  df-p0 17765  df-p1 17766  df-lat 17772  df-clat 17834  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-submnd 18073  df-grp 18222  df-minusg 18223  df-sbg 18224  df-subg 18394  df-cntz 18565  df-oppg 18592  df-lsm 18879  df-cmn 19026  df-abl 19027  df-mgp 19359  df-ur 19371  df-ring 19418  df-oppr 19495  df-dvdsr 19513  df-unit 19514  df-invr 19544  df-dvr 19555  df-drng 19623  df-lmod 19755  df-lss 19823  df-lsp 19863  df-lvec 19994  df-lsatoms 36633  df-lshyp 36634  df-lcv 36676  df-lfl 36715  df-lkr 36743  df-ldual 36781  df-oposet 36833  df-ol 36835  df-oml 36836  df-covers 36923  df-ats 36924  df-atl 36955  df-cvlat 36979  df-hlat 37008  df-llines 37155  df-lplanes 37156  df-lvols 37157  df-lines 37158  df-psubsp 37160  df-pmap 37161  df-padd 37453  df-lhyp 37645  df-laut 37646  df-ldil 37761  df-ltrn 37762  df-trl 37816  df-tgrp 38400  df-tendo 38412  df-edring 38414  df-dveca 38660  df-disoa 38686  df-dvech 38736  df-dib 38796  df-dic 38830  df-dih 38886  df-doch 39005  df-djh 39052  df-lcdual 39244  df-mapd 39282  df-hdmap1 39450
This theorem is referenced by:  hdmap1l6lem2  39465  hdmap1l6a  39466
  Copyright terms: Public domain W3C validator