Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1l6lem1 Structured version   Visualization version   GIF version

Theorem hdmap1l6lem1 41852
Description: Lemma for hdmap1l6 41866. Part (6) in [Baer] p. 47, lines 16-18. (Contributed by NM, 13-Apr-2015.)
Hypotheses
Ref Expression
hdmap1l6.h 𝐻 = (LHyp‘𝐾)
hdmap1l6.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap1l6.v 𝑉 = (Base‘𝑈)
hdmap1l6.p + = (+g𝑈)
hdmap1l6.s = (-g𝑈)
hdmap1l6c.o 0 = (0g𝑈)
hdmap1l6.n 𝑁 = (LSpan‘𝑈)
hdmap1l6.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap1l6.d 𝐷 = (Base‘𝐶)
hdmap1l6.a = (+g𝐶)
hdmap1l6.r 𝑅 = (-g𝐶)
hdmap1l6.q 𝑄 = (0g𝐶)
hdmap1l6.l 𝐿 = (LSpan‘𝐶)
hdmap1l6.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap1l6.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmap1l6.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap1l6.f (𝜑𝐹𝐷)
hdmap1l6cl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hdmap1l6.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
hdmap1l6e.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
hdmap1l6e.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
hdmap1l6e.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
hdmap1l6.yz (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
hdmap1l6.fg (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
hdmap1l6.fe (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
Assertion
Ref Expression
hdmap1l6lem1 (𝜑 → (𝑀‘(𝑁‘{(𝑋 (𝑌 + 𝑍))})) = (𝐿‘{(𝐹𝑅(𝐺 𝐸))}))

Proof of Theorem hdmap1l6lem1
StepHypRef Expression
1 hdmap1l6.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hdmap1l6.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
3 hdmap1l6.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 eqid 2731 . . . 4 (LSubSp‘𝑈) = (LSubSp‘𝑈)
5 hdmap1l6.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
61, 3, 5dvhlmod 41155 . . . . 5 (𝜑𝑈 ∈ LMod)
7 hdmap1l6cl.x . . . . . . . 8 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
87eldifad 3914 . . . . . . 7 (𝜑𝑋𝑉)
9 hdmap1l6e.y . . . . . . . 8 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
109eldifad 3914 . . . . . . 7 (𝜑𝑌𝑉)
11 hdmap1l6.v . . . . . . . 8 𝑉 = (Base‘𝑈)
12 hdmap1l6.s . . . . . . . 8 = (-g𝑈)
1311, 12lmodvsubcl 20841 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
146, 8, 10, 13syl3anc 1373 . . . . . 6 (𝜑 → (𝑋 𝑌) ∈ 𝑉)
15 hdmap1l6.n . . . . . . 7 𝑁 = (LSpan‘𝑈)
1611, 4, 15lspsncl 20911 . . . . . 6 ((𝑈 ∈ LMod ∧ (𝑋 𝑌) ∈ 𝑉) → (𝑁‘{(𝑋 𝑌)}) ∈ (LSubSp‘𝑈))
176, 14, 16syl2anc 584 . . . . 5 (𝜑 → (𝑁‘{(𝑋 𝑌)}) ∈ (LSubSp‘𝑈))
18 hdmap1l6e.z . . . . . . 7 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
1918eldifad 3914 . . . . . 6 (𝜑𝑍𝑉)
2011, 4, 15lspsncl 20911 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑍𝑉) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈))
216, 19, 20syl2anc 584 . . . . 5 (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈))
22 eqid 2731 . . . . . 6 (LSSum‘𝑈) = (LSSum‘𝑈)
234, 22lsmcl 21018 . . . . 5 ((𝑈 ∈ LMod ∧ (𝑁‘{(𝑋 𝑌)}) ∈ (LSubSp‘𝑈) ∧ (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈)) → ((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍})) ∈ (LSubSp‘𝑈))
246, 17, 21, 23syl3anc 1373 . . . 4 (𝜑 → ((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍})) ∈ (LSubSp‘𝑈))
2511, 12lmodvsubcl 20841 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝑋𝑉𝑍𝑉) → (𝑋 𝑍) ∈ 𝑉)
266, 8, 19, 25syl3anc 1373 . . . . . 6 (𝜑 → (𝑋 𝑍) ∈ 𝑉)
2711, 4, 15lspsncl 20911 . . . . . 6 ((𝑈 ∈ LMod ∧ (𝑋 𝑍) ∈ 𝑉) → (𝑁‘{(𝑋 𝑍)}) ∈ (LSubSp‘𝑈))
286, 26, 27syl2anc 584 . . . . 5 (𝜑 → (𝑁‘{(𝑋 𝑍)}) ∈ (LSubSp‘𝑈))
2911, 4, 15lspsncl 20911 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
306, 10, 29syl2anc 584 . . . . 5 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
314, 22lsmcl 21018 . . . . 5 ((𝑈 ∈ LMod ∧ (𝑁‘{(𝑋 𝑍)}) ∈ (LSubSp‘𝑈) ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) → ((𝑁‘{(𝑋 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌})) ∈ (LSubSp‘𝑈))
326, 28, 30, 31syl3anc 1373 . . . 4 (𝜑 → ((𝑁‘{(𝑋 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌})) ∈ (LSubSp‘𝑈))
331, 2, 3, 4, 5, 24, 32mapdin 41707 . . 3 (𝜑 → (𝑀‘(((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌})))) = ((𝑀‘((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍}))) ∩ (𝑀‘((𝑁‘{(𝑋 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌})))))
34 hdmap1l6.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
35 eqid 2731 . . . . . 6 (LSSum‘𝐶) = (LSSum‘𝐶)
361, 2, 3, 4, 22, 34, 35, 5, 17, 21mapdlsm 41709 . . . . 5 (𝜑 → (𝑀‘((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍}))) = ((𝑀‘(𝑁‘{(𝑋 𝑌)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍}))))
371, 2, 3, 4, 22, 34, 35, 5, 28, 30mapdlsm 41709 . . . . 5 (𝜑 → (𝑀‘((𝑁‘{(𝑋 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌}))) = ((𝑀‘(𝑁‘{(𝑋 𝑍)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))))
3836, 37ineq12d 4171 . . . 4 (𝜑 → ((𝑀‘((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍}))) ∩ (𝑀‘((𝑁‘{(𝑋 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌})))) = (((𝑀‘(𝑁‘{(𝑋 𝑌)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍}))) ∩ ((𝑀‘(𝑁‘{(𝑋 𝑍)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌})))))
39 hdmap1l6.fg . . . . . . . 8 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
40 hdmap1l6c.o . . . . . . . . 9 0 = (0g𝑈)
41 hdmap1l6.d . . . . . . . . 9 𝐷 = (Base‘𝐶)
42 hdmap1l6.r . . . . . . . . 9 𝑅 = (-g𝐶)
43 hdmap1l6.l . . . . . . . . 9 𝐿 = (LSpan‘𝐶)
44 hdmap1l6.i . . . . . . . . 9 𝐼 = ((HDMap1‘𝐾)‘𝑊)
45 hdmap1l6.f . . . . . . . . 9 (𝜑𝐹𝐷)
46 hdmap1l6.mn . . . . . . . . . . 11 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
471, 3, 5dvhlvec 41154 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ LVec)
48 hdmap1l6.yz . . . . . . . . . . . . 13 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
49 hdmap1l6e.xn . . . . . . . . . . . . 13 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
5011, 40, 15, 47, 10, 18, 8, 48, 49lspindp2 21073 . . . . . . . . . . . 12 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌})))
5150simpld 494 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
521, 3, 11, 40, 15, 34, 41, 43, 2, 44, 5, 45, 46, 51, 7, 10hdmap1cl 41849 . . . . . . . . . 10 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) ∈ 𝐷)
5339, 52eqeltrrd 2832 . . . . . . . . 9 (𝜑𝐺𝐷)
541, 3, 11, 12, 40, 15, 34, 41, 42, 43, 2, 44, 5, 7, 45, 9, 53, 51, 46hdmap1eq 41846 . . . . . . . 8 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)}))))
5539, 54mpbid 232 . . . . . . 7 (𝜑 → ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)})))
5655simprd 495 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)}))
57 hdmap1l6.fe . . . . . . . 8 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
5811, 40, 15, 47, 9, 19, 8, 48, 49lspindp1 21071 . . . . . . . . . . . 12 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}) ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})))
5958simpld 494 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
601, 3, 11, 40, 15, 34, 41, 43, 2, 44, 5, 45, 46, 59, 7, 19hdmap1cl 41849 . . . . . . . . . 10 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) ∈ 𝐷)
6157, 60eqeltrrd 2832 . . . . . . . . 9 (𝜑𝐸𝐷)
621, 3, 11, 12, 40, 15, 34, 41, 42, 43, 2, 44, 5, 7, 45, 18, 61, 59, 46hdmap1eq 41846 . . . . . . . 8 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸 ↔ ((𝑀‘(𝑁‘{𝑍})) = (𝐿‘{𝐸}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑍)})) = (𝐿‘{(𝐹𝑅𝐸)}))))
6357, 62mpbid 232 . . . . . . 7 (𝜑 → ((𝑀‘(𝑁‘{𝑍})) = (𝐿‘{𝐸}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑍)})) = (𝐿‘{(𝐹𝑅𝐸)})))
6463simpld 494 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑍})) = (𝐿‘{𝐸}))
6556, 64oveq12d 7364 . . . . 5 (𝜑 → ((𝑀‘(𝑁‘{(𝑋 𝑌)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍}))) = ((𝐿‘{(𝐹𝑅𝐺)})(LSSum‘𝐶)(𝐿‘{𝐸})))
6663simprd 495 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑍)})) = (𝐿‘{(𝐹𝑅𝐸)}))
6755simpld 494 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}))
6866, 67oveq12d 7364 . . . . 5 (𝜑 → ((𝑀‘(𝑁‘{(𝑋 𝑍)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) = ((𝐿‘{(𝐹𝑅𝐸)})(LSSum‘𝐶)(𝐿‘{𝐺})))
6965, 68ineq12d 4171 . . . 4 (𝜑 → (((𝑀‘(𝑁‘{(𝑋 𝑌)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍}))) ∩ ((𝑀‘(𝑁‘{(𝑋 𝑍)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌})))) = (((𝐿‘{(𝐹𝑅𝐺)})(LSSum‘𝐶)(𝐿‘{𝐸})) ∩ ((𝐿‘{(𝐹𝑅𝐸)})(LSSum‘𝐶)(𝐿‘{𝐺}))))
7038, 69eqtrd 2766 . . 3 (𝜑 → ((𝑀‘((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍}))) ∩ (𝑀‘((𝑁‘{(𝑋 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌})))) = (((𝐿‘{(𝐹𝑅𝐺)})(LSSum‘𝐶)(𝐿‘{𝐸})) ∩ ((𝐿‘{(𝐹𝑅𝐸)})(LSSum‘𝐶)(𝐿‘{𝐺}))))
7133, 70eqtrd 2766 . 2 (𝜑 → (𝑀‘(((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌})))) = (((𝐿‘{(𝐹𝑅𝐺)})(LSSum‘𝐶)(𝐿‘{𝐸})) ∩ ((𝐿‘{(𝐹𝑅𝐸)})(LSSum‘𝐶)(𝐿‘{𝐺}))))
72 hdmap1l6.p . . . 4 + = (+g𝑈)
7311, 12, 40, 22, 15, 47, 8, 49, 48, 9, 18, 72baerlem5a 41759 . . 3 (𝜑 → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) = (((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌}))))
7473fveq2d 6826 . 2 (𝜑 → (𝑀‘(𝑁‘{(𝑋 (𝑌 + 𝑍))})) = (𝑀‘(((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌})))))
75 hdmap1l6.q . . 3 𝑄 = (0g𝐶)
761, 34, 5lcdlvec 41636 . . 3 (𝜑𝐶 ∈ LVec)
771, 2, 3, 11, 15, 34, 41, 43, 5, 45, 46, 8, 10, 53, 67, 19, 61, 64, 49mapdindp 41716 . . 3 (𝜑 → ¬ 𝐹 ∈ (𝐿‘{𝐺, 𝐸}))
781, 2, 3, 11, 15, 34, 41, 43, 5, 53, 67, 10, 19, 61, 64, 48mapdncol 41715 . . 3 (𝜑 → (𝐿‘{𝐺}) ≠ (𝐿‘{𝐸}))
791, 2, 3, 11, 15, 34, 41, 43, 5, 53, 67, 40, 75, 9mapdn0 41714 . . 3 (𝜑𝐺 ∈ (𝐷 ∖ {𝑄}))
801, 2, 3, 11, 15, 34, 41, 43, 5, 61, 64, 40, 75, 18mapdn0 41714 . . 3 (𝜑𝐸 ∈ (𝐷 ∖ {𝑄}))
81 hdmap1l6.a . . 3 = (+g𝐶)
8241, 42, 75, 35, 43, 76, 45, 77, 78, 79, 80, 81baerlem5a 41759 . 2 (𝜑 → (𝐿‘{(𝐹𝑅(𝐺 𝐸))}) = (((𝐿‘{(𝐹𝑅𝐺)})(LSSum‘𝐶)(𝐿‘{𝐸})) ∩ ((𝐿‘{(𝐹𝑅𝐸)})(LSSum‘𝐶)(𝐿‘{𝐺}))))
8371, 74, 823eqtr4d 2776 1 (𝜑 → (𝑀‘(𝑁‘{(𝑋 (𝑌 + 𝑍))})) = (𝐿‘{(𝐹𝑅(𝐺 𝐸))}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  cdif 3899  cin 3901  {csn 4576  {cpr 4578  cotp 4584  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  0gc0g 17343  -gcsg 18848  LSSumclsm 19547  LModclmod 20794  LSubSpclss 20865  LSpanclspn 20905  HLchlt 39395  LHypclh 40029  DVecHcdvh 41123  LCDualclcd 41631  mapdcmpd 41669  HDMap1chdma1 41836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-riotaBAD 38998
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-ot 4585  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-undef 8203  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-0g 17345  df-mre 17488  df-mrc 17489  df-acs 17491  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-cntz 19230  df-oppg 19259  df-lsm 19549  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-ring 20154  df-oppr 20256  df-dvdsr 20276  df-unit 20277  df-invr 20307  df-dvr 20320  df-nzr 20429  df-rlreg 20610  df-domn 20611  df-drng 20647  df-lmod 20796  df-lss 20866  df-lsp 20906  df-lvec 21038  df-lsatoms 39021  df-lshyp 39022  df-lcv 39064  df-lfl 39103  df-lkr 39131  df-ldual 39169  df-oposet 39221  df-ol 39223  df-oml 39224  df-covers 39311  df-ats 39312  df-atl 39343  df-cvlat 39367  df-hlat 39396  df-llines 39543  df-lplanes 39544  df-lvols 39545  df-lines 39546  df-psubsp 39548  df-pmap 39549  df-padd 39841  df-lhyp 40033  df-laut 40034  df-ldil 40149  df-ltrn 40150  df-trl 40204  df-tgrp 40788  df-tendo 40800  df-edring 40802  df-dveca 41048  df-disoa 41074  df-dvech 41124  df-dib 41184  df-dic 41218  df-dih 41274  df-doch 41393  df-djh 41440  df-lcdual 41632  df-mapd 41670  df-hdmap1 41838
This theorem is referenced by:  hdmap1l6lem2  41853  hdmap1l6a  41854
  Copyright terms: Public domain W3C validator