Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1l6lem1 Structured version   Visualization version   GIF version

Theorem hdmap1l6lem1 38930
Description: Lemma for hdmap1l6 38944. Part (6) in [Baer] p. 47, lines 16-18. (Contributed by NM, 13-Apr-2015.)
Hypotheses
Ref Expression
hdmap1l6.h 𝐻 = (LHyp‘𝐾)
hdmap1l6.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap1l6.v 𝑉 = (Base‘𝑈)
hdmap1l6.p + = (+g𝑈)
hdmap1l6.s = (-g𝑈)
hdmap1l6c.o 0 = (0g𝑈)
hdmap1l6.n 𝑁 = (LSpan‘𝑈)
hdmap1l6.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap1l6.d 𝐷 = (Base‘𝐶)
hdmap1l6.a = (+g𝐶)
hdmap1l6.r 𝑅 = (-g𝐶)
hdmap1l6.q 𝑄 = (0g𝐶)
hdmap1l6.l 𝐿 = (LSpan‘𝐶)
hdmap1l6.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap1l6.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmap1l6.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap1l6.f (𝜑𝐹𝐷)
hdmap1l6cl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hdmap1l6.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
hdmap1l6e.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
hdmap1l6e.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
hdmap1l6e.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
hdmap1l6.yz (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
hdmap1l6.fg (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
hdmap1l6.fe (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
Assertion
Ref Expression
hdmap1l6lem1 (𝜑 → (𝑀‘(𝑁‘{(𝑋 (𝑌 + 𝑍))})) = (𝐿‘{(𝐹𝑅(𝐺 𝐸))}))

Proof of Theorem hdmap1l6lem1
StepHypRef Expression
1 hdmap1l6.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hdmap1l6.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
3 hdmap1l6.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 eqid 2819 . . . 4 (LSubSp‘𝑈) = (LSubSp‘𝑈)
5 hdmap1l6.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
61, 3, 5dvhlmod 38233 . . . . 5 (𝜑𝑈 ∈ LMod)
7 hdmap1l6cl.x . . . . . . . 8 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
87eldifad 3946 . . . . . . 7 (𝜑𝑋𝑉)
9 hdmap1l6e.y . . . . . . . 8 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
109eldifad 3946 . . . . . . 7 (𝜑𝑌𝑉)
11 hdmap1l6.v . . . . . . . 8 𝑉 = (Base‘𝑈)
12 hdmap1l6.s . . . . . . . 8 = (-g𝑈)
1311, 12lmodvsubcl 19671 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
146, 8, 10, 13syl3anc 1365 . . . . . 6 (𝜑 → (𝑋 𝑌) ∈ 𝑉)
15 hdmap1l6.n . . . . . . 7 𝑁 = (LSpan‘𝑈)
1611, 4, 15lspsncl 19741 . . . . . 6 ((𝑈 ∈ LMod ∧ (𝑋 𝑌) ∈ 𝑉) → (𝑁‘{(𝑋 𝑌)}) ∈ (LSubSp‘𝑈))
176, 14, 16syl2anc 586 . . . . 5 (𝜑 → (𝑁‘{(𝑋 𝑌)}) ∈ (LSubSp‘𝑈))
18 hdmap1l6e.z . . . . . . 7 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
1918eldifad 3946 . . . . . 6 (𝜑𝑍𝑉)
2011, 4, 15lspsncl 19741 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑍𝑉) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈))
216, 19, 20syl2anc 586 . . . . 5 (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈))
22 eqid 2819 . . . . . 6 (LSSum‘𝑈) = (LSSum‘𝑈)
234, 22lsmcl 19847 . . . . 5 ((𝑈 ∈ LMod ∧ (𝑁‘{(𝑋 𝑌)}) ∈ (LSubSp‘𝑈) ∧ (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈)) → ((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍})) ∈ (LSubSp‘𝑈))
246, 17, 21, 23syl3anc 1365 . . . 4 (𝜑 → ((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍})) ∈ (LSubSp‘𝑈))
2511, 12lmodvsubcl 19671 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝑋𝑉𝑍𝑉) → (𝑋 𝑍) ∈ 𝑉)
266, 8, 19, 25syl3anc 1365 . . . . . 6 (𝜑 → (𝑋 𝑍) ∈ 𝑉)
2711, 4, 15lspsncl 19741 . . . . . 6 ((𝑈 ∈ LMod ∧ (𝑋 𝑍) ∈ 𝑉) → (𝑁‘{(𝑋 𝑍)}) ∈ (LSubSp‘𝑈))
286, 26, 27syl2anc 586 . . . . 5 (𝜑 → (𝑁‘{(𝑋 𝑍)}) ∈ (LSubSp‘𝑈))
2911, 4, 15lspsncl 19741 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
306, 10, 29syl2anc 586 . . . . 5 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
314, 22lsmcl 19847 . . . . 5 ((𝑈 ∈ LMod ∧ (𝑁‘{(𝑋 𝑍)}) ∈ (LSubSp‘𝑈) ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) → ((𝑁‘{(𝑋 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌})) ∈ (LSubSp‘𝑈))
326, 28, 30, 31syl3anc 1365 . . . 4 (𝜑 → ((𝑁‘{(𝑋 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌})) ∈ (LSubSp‘𝑈))
331, 2, 3, 4, 5, 24, 32mapdin 38785 . . 3 (𝜑 → (𝑀‘(((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌})))) = ((𝑀‘((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍}))) ∩ (𝑀‘((𝑁‘{(𝑋 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌})))))
34 hdmap1l6.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
35 eqid 2819 . . . . . 6 (LSSum‘𝐶) = (LSSum‘𝐶)
361, 2, 3, 4, 22, 34, 35, 5, 17, 21mapdlsm 38787 . . . . 5 (𝜑 → (𝑀‘((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍}))) = ((𝑀‘(𝑁‘{(𝑋 𝑌)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍}))))
371, 2, 3, 4, 22, 34, 35, 5, 28, 30mapdlsm 38787 . . . . 5 (𝜑 → (𝑀‘((𝑁‘{(𝑋 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌}))) = ((𝑀‘(𝑁‘{(𝑋 𝑍)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))))
3836, 37ineq12d 4188 . . . 4 (𝜑 → ((𝑀‘((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍}))) ∩ (𝑀‘((𝑁‘{(𝑋 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌})))) = (((𝑀‘(𝑁‘{(𝑋 𝑌)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍}))) ∩ ((𝑀‘(𝑁‘{(𝑋 𝑍)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌})))))
39 hdmap1l6.fg . . . . . . . 8 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
40 hdmap1l6c.o . . . . . . . . 9 0 = (0g𝑈)
41 hdmap1l6.d . . . . . . . . 9 𝐷 = (Base‘𝐶)
42 hdmap1l6.r . . . . . . . . 9 𝑅 = (-g𝐶)
43 hdmap1l6.l . . . . . . . . 9 𝐿 = (LSpan‘𝐶)
44 hdmap1l6.i . . . . . . . . 9 𝐼 = ((HDMap1‘𝐾)‘𝑊)
45 hdmap1l6.f . . . . . . . . 9 (𝜑𝐹𝐷)
46 hdmap1l6.mn . . . . . . . . . . 11 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
471, 3, 5dvhlvec 38232 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ LVec)
48 hdmap1l6.yz . . . . . . . . . . . . 13 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
49 hdmap1l6e.xn . . . . . . . . . . . . 13 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
5011, 40, 15, 47, 10, 18, 8, 48, 49lspindp2 19899 . . . . . . . . . . . 12 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌})))
5150simpld 497 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
521, 3, 11, 40, 15, 34, 41, 43, 2, 44, 5, 45, 46, 51, 7, 10hdmap1cl 38927 . . . . . . . . . 10 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) ∈ 𝐷)
5339, 52eqeltrrd 2912 . . . . . . . . 9 (𝜑𝐺𝐷)
541, 3, 11, 12, 40, 15, 34, 41, 42, 43, 2, 44, 5, 7, 45, 9, 53, 51, 46hdmap1eq 38924 . . . . . . . 8 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)}))))
5539, 54mpbid 234 . . . . . . 7 (𝜑 → ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)})))
5655simprd 498 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)}))
57 hdmap1l6.fe . . . . . . . 8 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
5811, 40, 15, 47, 9, 19, 8, 48, 49lspindp1 19897 . . . . . . . . . . . 12 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}) ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})))
5958simpld 497 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
601, 3, 11, 40, 15, 34, 41, 43, 2, 44, 5, 45, 46, 59, 7, 19hdmap1cl 38927 . . . . . . . . . 10 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) ∈ 𝐷)
6157, 60eqeltrrd 2912 . . . . . . . . 9 (𝜑𝐸𝐷)
621, 3, 11, 12, 40, 15, 34, 41, 42, 43, 2, 44, 5, 7, 45, 18, 61, 59, 46hdmap1eq 38924 . . . . . . . 8 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸 ↔ ((𝑀‘(𝑁‘{𝑍})) = (𝐿‘{𝐸}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑍)})) = (𝐿‘{(𝐹𝑅𝐸)}))))
6357, 62mpbid 234 . . . . . . 7 (𝜑 → ((𝑀‘(𝑁‘{𝑍})) = (𝐿‘{𝐸}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑍)})) = (𝐿‘{(𝐹𝑅𝐸)})))
6463simpld 497 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑍})) = (𝐿‘{𝐸}))
6556, 64oveq12d 7166 . . . . 5 (𝜑 → ((𝑀‘(𝑁‘{(𝑋 𝑌)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍}))) = ((𝐿‘{(𝐹𝑅𝐺)})(LSSum‘𝐶)(𝐿‘{𝐸})))
6663simprd 498 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑍)})) = (𝐿‘{(𝐹𝑅𝐸)}))
6755simpld 497 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}))
6866, 67oveq12d 7166 . . . . 5 (𝜑 → ((𝑀‘(𝑁‘{(𝑋 𝑍)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) = ((𝐿‘{(𝐹𝑅𝐸)})(LSSum‘𝐶)(𝐿‘{𝐺})))
6965, 68ineq12d 4188 . . . 4 (𝜑 → (((𝑀‘(𝑁‘{(𝑋 𝑌)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍}))) ∩ ((𝑀‘(𝑁‘{(𝑋 𝑍)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌})))) = (((𝐿‘{(𝐹𝑅𝐺)})(LSSum‘𝐶)(𝐿‘{𝐸})) ∩ ((𝐿‘{(𝐹𝑅𝐸)})(LSSum‘𝐶)(𝐿‘{𝐺}))))
7038, 69eqtrd 2854 . . 3 (𝜑 → ((𝑀‘((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍}))) ∩ (𝑀‘((𝑁‘{(𝑋 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌})))) = (((𝐿‘{(𝐹𝑅𝐺)})(LSSum‘𝐶)(𝐿‘{𝐸})) ∩ ((𝐿‘{(𝐹𝑅𝐸)})(LSSum‘𝐶)(𝐿‘{𝐺}))))
7133, 70eqtrd 2854 . 2 (𝜑 → (𝑀‘(((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌})))) = (((𝐿‘{(𝐹𝑅𝐺)})(LSSum‘𝐶)(𝐿‘{𝐸})) ∩ ((𝐿‘{(𝐹𝑅𝐸)})(LSSum‘𝐶)(𝐿‘{𝐺}))))
72 hdmap1l6.p . . . 4 + = (+g𝑈)
7311, 12, 40, 22, 15, 47, 8, 49, 48, 9, 18, 72baerlem5a 38837 . . 3 (𝜑 → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) = (((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌}))))
7473fveq2d 6667 . 2 (𝜑 → (𝑀‘(𝑁‘{(𝑋 (𝑌 + 𝑍))})) = (𝑀‘(((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌})))))
75 hdmap1l6.q . . 3 𝑄 = (0g𝐶)
761, 34, 5lcdlvec 38714 . . 3 (𝜑𝐶 ∈ LVec)
771, 2, 3, 11, 15, 34, 41, 43, 5, 45, 46, 8, 10, 53, 67, 19, 61, 64, 49mapdindp 38794 . . 3 (𝜑 → ¬ 𝐹 ∈ (𝐿‘{𝐺, 𝐸}))
781, 2, 3, 11, 15, 34, 41, 43, 5, 53, 67, 10, 19, 61, 64, 48mapdncol 38793 . . 3 (𝜑 → (𝐿‘{𝐺}) ≠ (𝐿‘{𝐸}))
791, 2, 3, 11, 15, 34, 41, 43, 5, 53, 67, 40, 75, 9mapdn0 38792 . . 3 (𝜑𝐺 ∈ (𝐷 ∖ {𝑄}))
801, 2, 3, 11, 15, 34, 41, 43, 5, 61, 64, 40, 75, 18mapdn0 38792 . . 3 (𝜑𝐸 ∈ (𝐷 ∖ {𝑄}))
81 hdmap1l6.a . . 3 = (+g𝐶)
8241, 42, 75, 35, 43, 76, 45, 77, 78, 79, 80, 81baerlem5a 38837 . 2 (𝜑 → (𝐿‘{(𝐹𝑅(𝐺 𝐸))}) = (((𝐿‘{(𝐹𝑅𝐺)})(LSSum‘𝐶)(𝐿‘{𝐸})) ∩ ((𝐿‘{(𝐹𝑅𝐸)})(LSSum‘𝐶)(𝐿‘{𝐺}))))
8371, 74, 823eqtr4d 2864 1 (𝜑 → (𝑀‘(𝑁‘{(𝑋 (𝑌 + 𝑍))})) = (𝐿‘{(𝐹𝑅(𝐺 𝐸))}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1530  wcel 2107  wne 3014  cdif 3931  cin 3933  {csn 4559  {cpr 4561  cotp 4567  cfv 6348  (class class class)co 7148  Basecbs 16475  +gcplusg 16557  0gc0g 16705  -gcsg 18097  LSSumclsm 18751  LModclmod 19626  LSubSpclss 19695  LSpanclspn 19735  HLchlt 36473  LHypclh 37107  DVecHcdvh 38201  LCDualclcd 38709  mapdcmpd 38747  HDMap1chdma1 38914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-riotaBAD 36076
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-ot 4568  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-tpos 7884  df-undef 7931  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-0g 16707  df-mre 16849  df-mrc 16850  df-acs 16852  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-cntz 18439  df-oppg 18466  df-lsm 18753  df-cmn 18900  df-abl 18901  df-mgp 19232  df-ur 19244  df-ring 19291  df-oppr 19365  df-dvdsr 19383  df-unit 19384  df-invr 19414  df-dvr 19425  df-drng 19496  df-lmod 19628  df-lss 19696  df-lsp 19736  df-lvec 19867  df-lsatoms 36099  df-lshyp 36100  df-lcv 36142  df-lfl 36181  df-lkr 36209  df-ldual 36247  df-oposet 36299  df-ol 36301  df-oml 36302  df-covers 36389  df-ats 36390  df-atl 36421  df-cvlat 36445  df-hlat 36474  df-llines 36621  df-lplanes 36622  df-lvols 36623  df-lines 36624  df-psubsp 36626  df-pmap 36627  df-padd 36919  df-lhyp 37111  df-laut 37112  df-ldil 37227  df-ltrn 37228  df-trl 37282  df-tgrp 37866  df-tendo 37878  df-edring 37880  df-dveca 38126  df-disoa 38152  df-dvech 38202  df-dib 38262  df-dic 38296  df-dih 38352  df-doch 38471  df-djh 38518  df-lcdual 38710  df-mapd 38748  df-hdmap1 38916
This theorem is referenced by:  hdmap1l6lem2  38931  hdmap1l6a  38932
  Copyright terms: Public domain W3C validator