Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1l6lem1 Structured version   Visualization version   GIF version

Theorem hdmap1l6lem1 41168
Description: Lemma for hdmap1l6 41182. Part (6) in [Baer] p. 47, lines 16-18. (Contributed by NM, 13-Apr-2015.)
Hypotheses
Ref Expression
hdmap1l6.h 𝐻 = (LHyp‘𝐾)
hdmap1l6.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap1l6.v 𝑉 = (Base‘𝑈)
hdmap1l6.p + = (+g𝑈)
hdmap1l6.s = (-g𝑈)
hdmap1l6c.o 0 = (0g𝑈)
hdmap1l6.n 𝑁 = (LSpan‘𝑈)
hdmap1l6.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap1l6.d 𝐷 = (Base‘𝐶)
hdmap1l6.a = (+g𝐶)
hdmap1l6.r 𝑅 = (-g𝐶)
hdmap1l6.q 𝑄 = (0g𝐶)
hdmap1l6.l 𝐿 = (LSpan‘𝐶)
hdmap1l6.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap1l6.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmap1l6.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap1l6.f (𝜑𝐹𝐷)
hdmap1l6cl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hdmap1l6.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
hdmap1l6e.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
hdmap1l6e.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
hdmap1l6e.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
hdmap1l6.yz (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
hdmap1l6.fg (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
hdmap1l6.fe (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
Assertion
Ref Expression
hdmap1l6lem1 (𝜑 → (𝑀‘(𝑁‘{(𝑋 (𝑌 + 𝑍))})) = (𝐿‘{(𝐹𝑅(𝐺 𝐸))}))

Proof of Theorem hdmap1l6lem1
StepHypRef Expression
1 hdmap1l6.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hdmap1l6.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
3 hdmap1l6.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 eqid 2724 . . . 4 (LSubSp‘𝑈) = (LSubSp‘𝑈)
5 hdmap1l6.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
61, 3, 5dvhlmod 40471 . . . . 5 (𝜑𝑈 ∈ LMod)
7 hdmap1l6cl.x . . . . . . . 8 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
87eldifad 3952 . . . . . . 7 (𝜑𝑋𝑉)
9 hdmap1l6e.y . . . . . . . 8 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
109eldifad 3952 . . . . . . 7 (𝜑𝑌𝑉)
11 hdmap1l6.v . . . . . . . 8 𝑉 = (Base‘𝑈)
12 hdmap1l6.s . . . . . . . 8 = (-g𝑈)
1311, 12lmodvsubcl 20743 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
146, 8, 10, 13syl3anc 1368 . . . . . 6 (𝜑 → (𝑋 𝑌) ∈ 𝑉)
15 hdmap1l6.n . . . . . . 7 𝑁 = (LSpan‘𝑈)
1611, 4, 15lspsncl 20814 . . . . . 6 ((𝑈 ∈ LMod ∧ (𝑋 𝑌) ∈ 𝑉) → (𝑁‘{(𝑋 𝑌)}) ∈ (LSubSp‘𝑈))
176, 14, 16syl2anc 583 . . . . 5 (𝜑 → (𝑁‘{(𝑋 𝑌)}) ∈ (LSubSp‘𝑈))
18 hdmap1l6e.z . . . . . . 7 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
1918eldifad 3952 . . . . . 6 (𝜑𝑍𝑉)
2011, 4, 15lspsncl 20814 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑍𝑉) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈))
216, 19, 20syl2anc 583 . . . . 5 (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈))
22 eqid 2724 . . . . . 6 (LSSum‘𝑈) = (LSSum‘𝑈)
234, 22lsmcl 20921 . . . . 5 ((𝑈 ∈ LMod ∧ (𝑁‘{(𝑋 𝑌)}) ∈ (LSubSp‘𝑈) ∧ (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈)) → ((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍})) ∈ (LSubSp‘𝑈))
246, 17, 21, 23syl3anc 1368 . . . 4 (𝜑 → ((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍})) ∈ (LSubSp‘𝑈))
2511, 12lmodvsubcl 20743 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝑋𝑉𝑍𝑉) → (𝑋 𝑍) ∈ 𝑉)
266, 8, 19, 25syl3anc 1368 . . . . . 6 (𝜑 → (𝑋 𝑍) ∈ 𝑉)
2711, 4, 15lspsncl 20814 . . . . . 6 ((𝑈 ∈ LMod ∧ (𝑋 𝑍) ∈ 𝑉) → (𝑁‘{(𝑋 𝑍)}) ∈ (LSubSp‘𝑈))
286, 26, 27syl2anc 583 . . . . 5 (𝜑 → (𝑁‘{(𝑋 𝑍)}) ∈ (LSubSp‘𝑈))
2911, 4, 15lspsncl 20814 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
306, 10, 29syl2anc 583 . . . . 5 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
314, 22lsmcl 20921 . . . . 5 ((𝑈 ∈ LMod ∧ (𝑁‘{(𝑋 𝑍)}) ∈ (LSubSp‘𝑈) ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) → ((𝑁‘{(𝑋 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌})) ∈ (LSubSp‘𝑈))
326, 28, 30, 31syl3anc 1368 . . . 4 (𝜑 → ((𝑁‘{(𝑋 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌})) ∈ (LSubSp‘𝑈))
331, 2, 3, 4, 5, 24, 32mapdin 41023 . . 3 (𝜑 → (𝑀‘(((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌})))) = ((𝑀‘((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍}))) ∩ (𝑀‘((𝑁‘{(𝑋 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌})))))
34 hdmap1l6.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
35 eqid 2724 . . . . . 6 (LSSum‘𝐶) = (LSSum‘𝐶)
361, 2, 3, 4, 22, 34, 35, 5, 17, 21mapdlsm 41025 . . . . 5 (𝜑 → (𝑀‘((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍}))) = ((𝑀‘(𝑁‘{(𝑋 𝑌)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍}))))
371, 2, 3, 4, 22, 34, 35, 5, 28, 30mapdlsm 41025 . . . . 5 (𝜑 → (𝑀‘((𝑁‘{(𝑋 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌}))) = ((𝑀‘(𝑁‘{(𝑋 𝑍)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))))
3836, 37ineq12d 4205 . . . 4 (𝜑 → ((𝑀‘((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍}))) ∩ (𝑀‘((𝑁‘{(𝑋 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌})))) = (((𝑀‘(𝑁‘{(𝑋 𝑌)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍}))) ∩ ((𝑀‘(𝑁‘{(𝑋 𝑍)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌})))))
39 hdmap1l6.fg . . . . . . . 8 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
40 hdmap1l6c.o . . . . . . . . 9 0 = (0g𝑈)
41 hdmap1l6.d . . . . . . . . 9 𝐷 = (Base‘𝐶)
42 hdmap1l6.r . . . . . . . . 9 𝑅 = (-g𝐶)
43 hdmap1l6.l . . . . . . . . 9 𝐿 = (LSpan‘𝐶)
44 hdmap1l6.i . . . . . . . . 9 𝐼 = ((HDMap1‘𝐾)‘𝑊)
45 hdmap1l6.f . . . . . . . . 9 (𝜑𝐹𝐷)
46 hdmap1l6.mn . . . . . . . . . . 11 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
471, 3, 5dvhlvec 40470 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ LVec)
48 hdmap1l6.yz . . . . . . . . . . . . 13 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
49 hdmap1l6e.xn . . . . . . . . . . . . 13 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
5011, 40, 15, 47, 10, 18, 8, 48, 49lspindp2 20976 . . . . . . . . . . . 12 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌})))
5150simpld 494 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
521, 3, 11, 40, 15, 34, 41, 43, 2, 44, 5, 45, 46, 51, 7, 10hdmap1cl 41165 . . . . . . . . . 10 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) ∈ 𝐷)
5339, 52eqeltrrd 2826 . . . . . . . . 9 (𝜑𝐺𝐷)
541, 3, 11, 12, 40, 15, 34, 41, 42, 43, 2, 44, 5, 7, 45, 9, 53, 51, 46hdmap1eq 41162 . . . . . . . 8 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)}))))
5539, 54mpbid 231 . . . . . . 7 (𝜑 → ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)})))
5655simprd 495 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)}))
57 hdmap1l6.fe . . . . . . . 8 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
5811, 40, 15, 47, 9, 19, 8, 48, 49lspindp1 20974 . . . . . . . . . . . 12 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}) ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})))
5958simpld 494 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
601, 3, 11, 40, 15, 34, 41, 43, 2, 44, 5, 45, 46, 59, 7, 19hdmap1cl 41165 . . . . . . . . . 10 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) ∈ 𝐷)
6157, 60eqeltrrd 2826 . . . . . . . . 9 (𝜑𝐸𝐷)
621, 3, 11, 12, 40, 15, 34, 41, 42, 43, 2, 44, 5, 7, 45, 18, 61, 59, 46hdmap1eq 41162 . . . . . . . 8 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸 ↔ ((𝑀‘(𝑁‘{𝑍})) = (𝐿‘{𝐸}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑍)})) = (𝐿‘{(𝐹𝑅𝐸)}))))
6357, 62mpbid 231 . . . . . . 7 (𝜑 → ((𝑀‘(𝑁‘{𝑍})) = (𝐿‘{𝐸}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑍)})) = (𝐿‘{(𝐹𝑅𝐸)})))
6463simpld 494 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑍})) = (𝐿‘{𝐸}))
6556, 64oveq12d 7419 . . . . 5 (𝜑 → ((𝑀‘(𝑁‘{(𝑋 𝑌)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍}))) = ((𝐿‘{(𝐹𝑅𝐺)})(LSSum‘𝐶)(𝐿‘{𝐸})))
6663simprd 495 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑍)})) = (𝐿‘{(𝐹𝑅𝐸)}))
6755simpld 494 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}))
6866, 67oveq12d 7419 . . . . 5 (𝜑 → ((𝑀‘(𝑁‘{(𝑋 𝑍)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌}))) = ((𝐿‘{(𝐹𝑅𝐸)})(LSSum‘𝐶)(𝐿‘{𝐺})))
6965, 68ineq12d 4205 . . . 4 (𝜑 → (((𝑀‘(𝑁‘{(𝑋 𝑌)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍}))) ∩ ((𝑀‘(𝑁‘{(𝑋 𝑍)}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑌})))) = (((𝐿‘{(𝐹𝑅𝐺)})(LSSum‘𝐶)(𝐿‘{𝐸})) ∩ ((𝐿‘{(𝐹𝑅𝐸)})(LSSum‘𝐶)(𝐿‘{𝐺}))))
7038, 69eqtrd 2764 . . 3 (𝜑 → ((𝑀‘((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍}))) ∩ (𝑀‘((𝑁‘{(𝑋 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌})))) = (((𝐿‘{(𝐹𝑅𝐺)})(LSSum‘𝐶)(𝐿‘{𝐸})) ∩ ((𝐿‘{(𝐹𝑅𝐸)})(LSSum‘𝐶)(𝐿‘{𝐺}))))
7133, 70eqtrd 2764 . 2 (𝜑 → (𝑀‘(((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌})))) = (((𝐿‘{(𝐹𝑅𝐺)})(LSSum‘𝐶)(𝐿‘{𝐸})) ∩ ((𝐿‘{(𝐹𝑅𝐸)})(LSSum‘𝐶)(𝐿‘{𝐺}))))
72 hdmap1l6.p . . . 4 + = (+g𝑈)
7311, 12, 40, 22, 15, 47, 8, 49, 48, 9, 18, 72baerlem5a 41075 . . 3 (𝜑 → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) = (((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌}))))
7473fveq2d 6885 . 2 (𝜑 → (𝑀‘(𝑁‘{(𝑋 (𝑌 + 𝑍))})) = (𝑀‘(((𝑁‘{(𝑋 𝑌)})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 𝑍)})(LSSum‘𝑈)(𝑁‘{𝑌})))))
75 hdmap1l6.q . . 3 𝑄 = (0g𝐶)
761, 34, 5lcdlvec 40952 . . 3 (𝜑𝐶 ∈ LVec)
771, 2, 3, 11, 15, 34, 41, 43, 5, 45, 46, 8, 10, 53, 67, 19, 61, 64, 49mapdindp 41032 . . 3 (𝜑 → ¬ 𝐹 ∈ (𝐿‘{𝐺, 𝐸}))
781, 2, 3, 11, 15, 34, 41, 43, 5, 53, 67, 10, 19, 61, 64, 48mapdncol 41031 . . 3 (𝜑 → (𝐿‘{𝐺}) ≠ (𝐿‘{𝐸}))
791, 2, 3, 11, 15, 34, 41, 43, 5, 53, 67, 40, 75, 9mapdn0 41030 . . 3 (𝜑𝐺 ∈ (𝐷 ∖ {𝑄}))
801, 2, 3, 11, 15, 34, 41, 43, 5, 61, 64, 40, 75, 18mapdn0 41030 . . 3 (𝜑𝐸 ∈ (𝐷 ∖ {𝑄}))
81 hdmap1l6.a . . 3 = (+g𝐶)
8241, 42, 75, 35, 43, 76, 45, 77, 78, 79, 80, 81baerlem5a 41075 . 2 (𝜑 → (𝐿‘{(𝐹𝑅(𝐺 𝐸))}) = (((𝐿‘{(𝐹𝑅𝐺)})(LSSum‘𝐶)(𝐿‘{𝐸})) ∩ ((𝐿‘{(𝐹𝑅𝐸)})(LSSum‘𝐶)(𝐿‘{𝐺}))))
8371, 74, 823eqtr4d 2774 1 (𝜑 → (𝑀‘(𝑁‘{(𝑋 (𝑌 + 𝑍))})) = (𝐿‘{(𝐹𝑅(𝐺 𝐸))}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1533  wcel 2098  wne 2932  cdif 3937  cin 3939  {csn 4620  {cpr 4622  cotp 4628  cfv 6533  (class class class)co 7401  Basecbs 17143  +gcplusg 17196  0gc0g 17384  -gcsg 18855  LSSumclsm 19544  LModclmod 20696  LSubSpclss 20768  LSpanclspn 20808  HLchlt 38710  LHypclh 39345  DVecHcdvh 40439  LCDualclcd 40947  mapdcmpd 40985  HDMap1chdma1 41152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-riotaBAD 38313
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-ot 4629  df-uni 4900  df-int 4941  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-om 7849  df-1st 7968  df-2nd 7969  df-tpos 8206  df-undef 8253  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-n0 12470  df-z 12556  df-uz 12820  df-fz 13482  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-0g 17386  df-mre 17529  df-mrc 17530  df-acs 17532  df-proset 18250  df-poset 18268  df-plt 18285  df-lub 18301  df-glb 18302  df-join 18303  df-meet 18304  df-p0 18380  df-p1 18381  df-lat 18387  df-clat 18454  df-mgm 18563  df-sgrp 18642  df-mnd 18658  df-submnd 18704  df-grp 18856  df-minusg 18857  df-sbg 18858  df-subg 19040  df-cntz 19223  df-oppg 19252  df-lsm 19546  df-cmn 19692  df-abl 19693  df-mgp 20030  df-rng 20048  df-ur 20077  df-ring 20130  df-oppr 20226  df-dvdsr 20249  df-unit 20250  df-invr 20280  df-dvr 20293  df-drng 20579  df-lmod 20698  df-lss 20769  df-lsp 20809  df-lvec 20941  df-lsatoms 38336  df-lshyp 38337  df-lcv 38379  df-lfl 38418  df-lkr 38446  df-ldual 38484  df-oposet 38536  df-ol 38538  df-oml 38539  df-covers 38626  df-ats 38627  df-atl 38658  df-cvlat 38682  df-hlat 38711  df-llines 38859  df-lplanes 38860  df-lvols 38861  df-lines 38862  df-psubsp 38864  df-pmap 38865  df-padd 39157  df-lhyp 39349  df-laut 39350  df-ldil 39465  df-ltrn 39466  df-trl 39520  df-tgrp 40104  df-tendo 40116  df-edring 40118  df-dveca 40364  df-disoa 40390  df-dvech 40440  df-dib 40500  df-dic 40534  df-dih 40590  df-doch 40709  df-djh 40756  df-lcdual 40948  df-mapd 40986  df-hdmap1 41154
This theorem is referenced by:  hdmap1l6lem2  41169  hdmap1l6a  41170
  Copyright terms: Public domain W3C validator