| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdpglem8 | Structured version Visualization version GIF version | ||
| Description: Lemma for mapdpg 41745. Baer p. 45, line 4: "...so that (F(x-y))* <= (Fy)*. This would imply that F(x-y) <= F(y)..." (Contributed by NM, 20-Mar-2015.) |
| Ref | Expression |
|---|---|
| mapdpglem.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| mapdpglem.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| mapdpglem.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| mapdpglem.v | ⊢ 𝑉 = (Base‘𝑈) |
| mapdpglem.s | ⊢ − = (-g‘𝑈) |
| mapdpglem.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| mapdpglem.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| mapdpglem.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| mapdpglem.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| mapdpglem.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| mapdpglem1.p | ⊢ ⊕ = (LSSum‘𝐶) |
| mapdpglem2.j | ⊢ 𝐽 = (LSpan‘𝐶) |
| mapdpglem3.f | ⊢ 𝐹 = (Base‘𝐶) |
| mapdpglem3.te | ⊢ (𝜑 → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌})))) |
| mapdpglem3.a | ⊢ 𝐴 = (Scalar‘𝑈) |
| mapdpglem3.b | ⊢ 𝐵 = (Base‘𝐴) |
| mapdpglem3.t | ⊢ · = ( ·𝑠 ‘𝐶) |
| mapdpglem3.r | ⊢ 𝑅 = (-g‘𝐶) |
| mapdpglem3.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| mapdpglem3.e | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺})) |
| mapdpglem4.q | ⊢ 𝑄 = (0g‘𝑈) |
| mapdpglem.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| mapdpglem4.jt | ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{𝑡})) |
| mapdpglem4.z | ⊢ 0 = (0g‘𝐴) |
| mapdpglem4.g4 | ⊢ (𝜑 → 𝑔 ∈ 𝐵) |
| mapdpglem4.z4 | ⊢ (𝜑 → 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) |
| mapdpglem4.t4 | ⊢ (𝜑 → 𝑡 = ((𝑔 · 𝐺)𝑅𝑧)) |
| mapdpglem4.xn | ⊢ (𝜑 → 𝑋 ≠ 𝑄) |
| mapdpglem4.g0 | ⊢ (𝜑 → 𝑔 = 0 ) |
| Ref | Expression |
|---|---|
| mapdpglem8 | ⊢ (𝜑 → (𝑁‘{(𝑋 − 𝑌)}) ⊆ (𝑁‘{𝑌})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdpglem4.jt | . . 3 ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{𝑡})) | |
| 2 | eqid 2731 | . . . 4 ⊢ (LSubSp‘𝐶) = (LSubSp‘𝐶) | |
| 3 | mapdpglem2.j | . . . 4 ⊢ 𝐽 = (LSpan‘𝐶) | |
| 4 | mapdpglem.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | mapdpglem.c | . . . . 5 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 6 | mapdpglem.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 7 | 4, 5, 6 | lcdlmod 41631 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ LMod) |
| 8 | mapdpglem.m | . . . . 5 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 9 | mapdpglem.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 10 | eqid 2731 | . . . . 5 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
| 11 | 4, 9, 6 | dvhlmod 41149 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 12 | mapdpglem.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 13 | mapdpglem.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑈) | |
| 14 | mapdpglem.n | . . . . . . 7 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 15 | 13, 10, 14 | lspsncl 20905 | . . . . . 6 ⊢ ((𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
| 16 | 11, 12, 15 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
| 17 | 4, 8, 9, 10, 5, 2, 6, 16 | mapdcl2 41695 | . . . 4 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶)) |
| 18 | mapdpglem.s | . . . . 5 ⊢ − = (-g‘𝑈) | |
| 19 | mapdpglem.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 20 | mapdpglem1.p | . . . . 5 ⊢ ⊕ = (LSSum‘𝐶) | |
| 21 | mapdpglem3.f | . . . . 5 ⊢ 𝐹 = (Base‘𝐶) | |
| 22 | mapdpglem3.te | . . . . 5 ⊢ (𝜑 → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌})))) | |
| 23 | mapdpglem3.a | . . . . 5 ⊢ 𝐴 = (Scalar‘𝑈) | |
| 24 | mapdpglem3.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
| 25 | mapdpglem3.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝐶) | |
| 26 | mapdpglem3.r | . . . . 5 ⊢ 𝑅 = (-g‘𝐶) | |
| 27 | mapdpglem3.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 28 | mapdpglem3.e | . . . . 5 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺})) | |
| 29 | mapdpglem4.q | . . . . 5 ⊢ 𝑄 = (0g‘𝑈) | |
| 30 | mapdpglem.ne | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
| 31 | mapdpglem4.z | . . . . 5 ⊢ 0 = (0g‘𝐴) | |
| 32 | mapdpglem4.g4 | . . . . 5 ⊢ (𝜑 → 𝑔 ∈ 𝐵) | |
| 33 | mapdpglem4.z4 | . . . . 5 ⊢ (𝜑 → 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) | |
| 34 | mapdpglem4.t4 | . . . . 5 ⊢ (𝜑 → 𝑡 = ((𝑔 · 𝐺)𝑅𝑧)) | |
| 35 | mapdpglem4.xn | . . . . 5 ⊢ (𝜑 → 𝑋 ≠ 𝑄) | |
| 36 | mapdpglem4.g0 | . . . . 5 ⊢ (𝜑 → 𝑔 = 0 ) | |
| 37 | 4, 8, 9, 13, 18, 14, 5, 6, 19, 12, 20, 3, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 1, 31, 32, 33, 34, 35, 36 | mapdpglem6 41717 | . . . 4 ⊢ (𝜑 → 𝑡 ∈ (𝑀‘(𝑁‘{𝑌}))) |
| 38 | 2, 3, 7, 17, 37 | ellspsn5 20924 | . . 3 ⊢ (𝜑 → (𝐽‘{𝑡}) ⊆ (𝑀‘(𝑁‘{𝑌}))) |
| 39 | 1, 38 | eqsstrd 3964 | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) ⊆ (𝑀‘(𝑁‘{𝑌}))) |
| 40 | 13, 18 | lmodvsubcl 20835 | . . . . 5 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) ∈ 𝑉) |
| 41 | 11, 19, 12, 40 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝑋 − 𝑌) ∈ 𝑉) |
| 42 | 13, 10, 14 | lspsncl 20905 | . . . 4 ⊢ ((𝑈 ∈ LMod ∧ (𝑋 − 𝑌) ∈ 𝑉) → (𝑁‘{(𝑋 − 𝑌)}) ∈ (LSubSp‘𝑈)) |
| 43 | 11, 41, 42 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑁‘{(𝑋 − 𝑌)}) ∈ (LSubSp‘𝑈)) |
| 44 | 4, 9, 10, 8, 6, 43, 16 | mapdord 41677 | . 2 ⊢ (𝜑 → ((𝑀‘(𝑁‘{(𝑋 − 𝑌)})) ⊆ (𝑀‘(𝑁‘{𝑌})) ↔ (𝑁‘{(𝑋 − 𝑌)}) ⊆ (𝑁‘{𝑌}))) |
| 45 | 39, 44 | mpbid 232 | 1 ⊢ (𝜑 → (𝑁‘{(𝑋 − 𝑌)}) ⊆ (𝑁‘{𝑌})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ⊆ wss 3897 {csn 4571 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 Scalarcsca 17159 ·𝑠 cvsca 17160 0gc0g 17338 -gcsg 18843 LSSumclsm 19541 LModclmod 20788 LSubSpclss 20859 LSpanclspn 20899 HLchlt 39389 LHypclh 40023 DVecHcdvh 41117 LCDualclcd 41625 mapdcmpd 41663 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-riotaBAD 38992 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-tpos 8151 df-undef 8198 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-sca 17172 df-vsca 17173 df-0g 17340 df-mre 17483 df-mrc 17484 df-acs 17486 df-proset 18195 df-poset 18214 df-plt 18229 df-lub 18245 df-glb 18246 df-join 18247 df-meet 18248 df-p0 18324 df-p1 18325 df-lat 18333 df-clat 18400 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-subg 19031 df-cntz 19224 df-oppg 19253 df-lsm 19543 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-oppr 20250 df-dvdsr 20270 df-unit 20271 df-invr 20301 df-dvr 20314 df-nzr 20423 df-rlreg 20604 df-domn 20605 df-drng 20641 df-lmod 20790 df-lss 20860 df-lsp 20900 df-lvec 21032 df-lsatoms 39015 df-lshyp 39016 df-lcv 39058 df-lfl 39097 df-lkr 39125 df-ldual 39163 df-oposet 39215 df-ol 39217 df-oml 39218 df-covers 39305 df-ats 39306 df-atl 39337 df-cvlat 39361 df-hlat 39390 df-llines 39537 df-lplanes 39538 df-lvols 39539 df-lines 39540 df-psubsp 39542 df-pmap 39543 df-padd 39835 df-lhyp 40027 df-laut 40028 df-ldil 40143 df-ltrn 40144 df-trl 40198 df-tgrp 40782 df-tendo 40794 df-edring 40796 df-dveca 41042 df-disoa 41068 df-dvech 41118 df-dib 41178 df-dic 41212 df-dih 41268 df-doch 41387 df-djh 41434 df-lcdual 41626 df-mapd 41664 |
| This theorem is referenced by: mapdpglem9 41719 |
| Copyright terms: Public domain | W3C validator |