Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem1 Structured version   Visualization version   GIF version

Theorem mapdpglem1 38800
Description: Lemma for mapdpg 38834. Baer p. 44, last line: "(F(x-y))* <= (Fx)*+(Fy)*." (Contributed by NM, 15-Mar-2015.)
Hypotheses
Ref Expression
mapdpglem.h 𝐻 = (LHyp‘𝐾)
mapdpglem.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpglem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpglem.v 𝑉 = (Base‘𝑈)
mapdpglem.s = (-g𝑈)
mapdpglem.n 𝑁 = (LSpan‘𝑈)
mapdpglem.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpglem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpglem.x (𝜑𝑋𝑉)
mapdpglem.y (𝜑𝑌𝑉)
mapdpglem1.p = (LSSum‘𝐶)
Assertion
Ref Expression
mapdpglem1 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) ⊆ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))

Proof of Theorem mapdpglem1
StepHypRef Expression
1 mapdpglem.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 mapdpglem.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdpglem.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3dvhlmod 38238 . . . 4 (𝜑𝑈 ∈ LMod)
5 mapdpglem.x . . . 4 (𝜑𝑋𝑉)
6 mapdpglem.y . . . 4 (𝜑𝑌𝑉)
7 mapdpglem.v . . . . 5 𝑉 = (Base‘𝑈)
8 mapdpglem.s . . . . 5 = (-g𝑈)
9 eqid 2819 . . . . 5 (LSSum‘𝑈) = (LSSum‘𝑈)
10 mapdpglem.n . . . . 5 𝑁 = (LSpan‘𝑈)
117, 8, 9, 10lspsntrim 19862 . . . 4 ((𝑈 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑁‘{(𝑋 𝑌)}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌})))
124, 5, 6, 11syl3anc 1365 . . 3 (𝜑 → (𝑁‘{(𝑋 𝑌)}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌})))
13 eqid 2819 . . . 4 (LSubSp‘𝑈) = (LSubSp‘𝑈)
14 mapdpglem.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
157, 8lmodvsubcl 19671 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
164, 5, 6, 15syl3anc 1365 . . . . 5 (𝜑 → (𝑋 𝑌) ∈ 𝑉)
177, 13, 10lspsncl 19741 . . . . 5 ((𝑈 ∈ LMod ∧ (𝑋 𝑌) ∈ 𝑉) → (𝑁‘{(𝑋 𝑌)}) ∈ (LSubSp‘𝑈))
184, 16, 17syl2anc 586 . . . 4 (𝜑 → (𝑁‘{(𝑋 𝑌)}) ∈ (LSubSp‘𝑈))
197, 13, 10lspsncl 19741 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
204, 5, 19syl2anc 586 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
217, 13, 10lspsncl 19741 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
224, 6, 21syl2anc 586 . . . . 5 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
2313, 9lsmcl 19847 . . . . 5 ((𝑈 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈) ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) → ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌})) ∈ (LSubSp‘𝑈))
244, 20, 22, 23syl3anc 1365 . . . 4 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌})) ∈ (LSubSp‘𝑈))
251, 2, 13, 14, 3, 18, 24mapdord 38766 . . 3 (𝜑 → ((𝑀‘(𝑁‘{(𝑋 𝑌)})) ⊆ (𝑀‘((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌}))) ↔ (𝑁‘{(𝑋 𝑌)}) ⊆ ((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌}))))
2612, 25mpbird 259 . 2 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) ⊆ (𝑀‘((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌}))))
27 mapdpglem.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
28 mapdpglem1.p . . 3 = (LSSum‘𝐶)
291, 14, 2, 13, 9, 27, 28, 3, 20, 22mapdlsm 38792 . 2 (𝜑 → (𝑀‘((𝑁‘{𝑋})(LSSum‘𝑈)(𝑁‘{𝑌}))) = ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
3026, 29sseqtrd 4005 1 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) ⊆ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1530  wcel 2107  wss 3934  {csn 4559  cfv 6348  (class class class)co 7148  Basecbs 16475  -gcsg 18097  LSSumclsm 18751  LModclmod 19626  LSubSpclss 19695  LSpanclspn 19735  HLchlt 36478  LHypclh 37112  DVecHcdvh 38206  LCDualclcd 38714  mapdcmpd 38752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-riotaBAD 36081
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-tpos 7884  df-undef 7931  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-0g 16707  df-mre 16849  df-mrc 16850  df-acs 16852  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-cntz 18439  df-oppg 18466  df-lsm 18753  df-cmn 18900  df-abl 18901  df-mgp 19232  df-ur 19244  df-ring 19291  df-oppr 19365  df-dvdsr 19383  df-unit 19384  df-invr 19414  df-dvr 19425  df-drng 19496  df-lmod 19628  df-lss 19696  df-lsp 19736  df-lvec 19867  df-lsatoms 36104  df-lshyp 36105  df-lcv 36147  df-lfl 36186  df-lkr 36214  df-ldual 36252  df-oposet 36304  df-ol 36306  df-oml 36307  df-covers 36394  df-ats 36395  df-atl 36426  df-cvlat 36450  df-hlat 36479  df-llines 36626  df-lplanes 36627  df-lvols 36628  df-lines 36629  df-psubsp 36631  df-pmap 36632  df-padd 36924  df-lhyp 37116  df-laut 37117  df-ldil 37232  df-ltrn 37233  df-trl 37287  df-tgrp 37871  df-tendo 37883  df-edring 37885  df-dveca 38131  df-disoa 38157  df-dvech 38207  df-dib 38267  df-dic 38301  df-dih 38357  df-doch 38476  df-djh 38523  df-lcdual 38715  df-mapd 38753
This theorem is referenced by:  mapdpglem2  38801
  Copyright terms: Public domain W3C validator